Answer:
See explanation
Explanation:
We have a mass
revolving around an axis with an angular speed
, the distance from the axis is
. We are given:
![\omega = 10 [rad/s]\\r=0.5 [m]\\m=13[Kg]](https://tex.z-dn.net/?f=%5Comega%20%3D%2010%20%5Brad%2Fs%5D%5C%5Cr%3D0.5%20%5Bm%5D%5C%5Cm%3D13%5BKg%5D)
and also the formula which states that the kinetic rotational energy of a body is:
.
Now we use the kinetic energy formula

where
is the tangential velocity of the particle. Tangential velocity is related to angular velocity by:

After replacing in the previous equation we get:

now we have the following:

therefore:

then the moment of inertia will be:
![I = 13*(0.5)^2=3.25 [Kg*m^2]](https://tex.z-dn.net/?f=I%20%3D%2013%2A%280.5%29%5E2%3D3.25%20%5BKg%2Am%5E2%5D)
That is a lunar eclipse. At night, when the Earth is between the Sun and the moon, the moon would appear to be red. Just for future reference, a solar eclipse is when the Moon is between the Sun and Earth. Speaking of which, check out the solar eclipse this August!
Answer:
the last one, It moves away from a mid-ocean ridge.
Velocity of the mass after 11 seconds = ( value of the gravitational acceleration) * ( time )
velocity = ( 9.81 m / s^2 ) ( 11)
velocity = 107.91 meters per second
Answer:
Area=1.5(1.5)=2.25m^2
Force of gravity=10N
\begin{gathered}\\ \sf\longmapsto Pressure=\dfrac{Force}{Area}\end{gathered}
⟼Pressure=
Area
Force
\begin{gathered}\\ \sf\longmapsto Pressure=\dfrac{10}{2.25}\end{gathered}
⟼Pressure=
2.25
10
\begin{gathered}\\ \sf\longmapsto Pressure=4.4Pa\end{gathered}
⟼Pressure=4.4Pa