<h2><u>Angles</u></h2>
<h3>If angle 1 is 140°, then find the measure of the other angles.</h3>
- ∠2 = <u>40°</u>
- ∠3 = <u>40°</u>
- ∠4 = <u>140°</u>
- ∠5 = <u>140°</u>
- ∠6 = <u>40°</u>
- ∠7 = <u>40°</u>
- ∠8 = <u>140°</u>
<u>Explanation:</u>
- The relationship between ∠1 and ∠2 are <u>supplementary angles</u>, so when you <u>add up their measurements, it will become 180°</u>. Simply subtract 180 and 140 to get the measure of ∠2. As well as ∠3, they're <u>linear pairs</u>. And they are also <u>supplementary</u>. To determine the measure of ∠6 and ∠7, notice the <u>relationship</u> between ∠2 and ∠6. As you noticed, it is <u>corresponding angles</u>. So they <u>have the same measurement</u>. If <u>∠2 = 40°</u>, then <u>∠6 = 40°</u>. As well as ∠7, because the relationship between ∠6 and ∠7 are <u>vertical pairs</u>. So the angle measurement of ∠7 is also <u>40°</u>.
- Meanwhile, the relationship between ∠1 and ∠4 are <u>vertical pairs</u>. It means they also <u>have the same measurement</u>. So ∠4 = <u>140°</u>. The relationship between ∠1 and ∠5 are <u>corresponding angles</u>, so they also <u>have the same measurement</u>. If <u>∠1 = 140°</u>, then <u>∠5 = 140°</u>. The relationship between ∠1 and ∠8 are <u>alternate exterior angles</u>, and they also <u>have the same measurement</u>. <u>If ∠1 = 140°</u>, then <u>∠8 = 140°</u>.
Wxndy~~
Answer:
A) x = 12
Step-by-step explanation:
4x-6 = 42
4 = 48
x = 12
7x+10 = 94
7x = 82
x = 12
Salutations!
<span>Round 287.9412 to the nearest tenth.
Lets solve this!
To round to the nearest tenth, you need to know the tenth place--------
In the number, 287.9412, nine is in the tenth place. You need also make sure whether the number next to 9 is greater than 5 or not.
</span><span>287.9412 =287.941=287.94=287.9=288=290
Thus, your answer is 290.
Hope I helped.
</span>
Take the homogeneous part and find the roots to the characteristic equation:

This means the characteristic solution is

.
Since the characteristic solution already contains both functions on the RHS of the ODE, you could try finding a solution via the method of undetermined coefficients of the form

. Finding the second derivative involves quite a few applications of the product rule, so I'll resort to a different method via variation of parameters.
With

and

, you're looking for a particular solution of the form

. The functions

satisfy


where

is the Wronskian determinant of the two characteristic solutions.

So you have




So you end up with a solution

but since

is already accounted for in the characteristic solution, the particular solution is then

so that the general solution is
Answer:
5+5=9and mark me as brainlestttt