Answer:
Mitochondria - energy production in plant and animal tissue
Explanation:
The mitochondria is the power house of a cell. it contains adenosine-tri- phosphate or ATP molecules that produce energy through active transport. The mitochondria is responsible for energy production in both plant and animal cells
To answer the question above, multiply the given number of moles by the molar masses.
(A) (0.20 mole) x (32 g / 1 mole) = 6.4 grams O2
(B) (0.75 mole) x (62 g / 1 mole) = 46.5 grams H2CO3
(C) (3.42 moles) x (28 g / 1 mole) = 95.7 grams CO
(D) (4.1 moles) x (29.88 g / 1 mole) = 122.508 g Li2O
The answer to the question above is letter D.
Hydrogen bonds are strong intermolecular forces created when a hydrogen atom bonded to an electronegative atom approaches a nearby electronegative atom. Greater electronegativity of the hydrogen bond acceptor will lead to an increase in hydrogen-bond strength.
I hope this helps
Answer:
Explanation:
It rises Food in your stomach (Food slows down alcohol absorption. What's the best to eat? Protein! It takes the longest to digest)
<span>A compound is found to be 40.0% carbon, 6.7% hydrogen and 53.5% oxygen. Its molecular mass is 60. g/mol.
</span>Q1)
Empirical formula is the simplest ratio of whole numbers of components making up a compound.
the percentages have been given, therefore we can calculate for 100 g of the compound.
C H O
Mass in 100 g 40.0 g 6.7 g 53.5 g
Molar mass 12 g/mol 1 g/mol 16 g/mol
Number of moles 40.0/12= 3.33 6.7/1 = 6.7 53.5/16 = 3.34
Divide by the least number of moles
3.33/3.33 = 1 6.7/3.33 = 2.01 3.34/3.33 = 1.00
after rounding off
C - 1
H - 2
O - 1
Empirical formula - CH₂O
Q2)
Molecular formula is the actual number of components making up the compound.
To find the number of empirical units we have to find the mass of one empirical unit.
Mass of one empirical unit = CH₂O - 12 + (1x2) + 16 = 30 g
Mass of one mole of compound = 60 g
Number of empirical units = 60 g / 30 g = 2
Therefore molecular formula - 2(CH₂O)
Molecular formula - C₂H₄O₂