Answer: 1. CaO + H2O => Ca(OH)2
2. P4 + 5O2 => 2P2O5
3. 2 Ca + O2 => 2 CaO
4. 8 Cu + S8 => 8 CuS
5. CaO + H2O => Ca(OH)2
6. S8 + 8 O2 => 8 SO2
7. 3 H2 + N2 => 2 NH3
8. H2 + Cl2 =>2 HCl
9. 16 Ag + S8 => 8 Ag2S
10. Cr + O2 => 2Cr2O3
11. 2Al + 3Br2 => 2AlBr3
12. 2Na + I2 => 2NaI
13. 2H2 + O2 =>2 H2O
14. 4 Al + 3O2 => 2 Al2O3
Explanation:
Answer:
The correct appropriate will be Option 1 (Acid anhydrides are less stable than esters so the equilibrium favors the ester product.)
Explanation:
- Acid anhydride, instead of just a carboxyl group, is typically favored for esterification. The predominant theory would be that Anhydride acid is somewhat more volatile than acid. This is favored equilibrium changes more toward the right of the whole ester structure.
- Extremely responsive than carboxylic acid become acid anhydride as well as acyl chloride. Thus, for esterification, individuals were most favored.
The other options offered are not relevant to something like the scenario presented. So, the solution here is just the right one.
Answer options from an alternative source
- fructose
- lactose
- starch
- glucose
- cellulose
Answer:
- fructose -monosaccharide
- lactose - disaccharide
- starch - polysaccharide
- glucose - monosaccharide
- cellulose - polysaccharide
Explanation:
Monosaccharides are carbohydrates that are the simplest form of a sugar. They cannot be further broken down into smaller carbohydrates, and represent the basic building block for carbohydrates. Monosaccharides can form disaccharides, which are the sugar formed when two monosaccharides join together, or polysaccharides, which are chains of monosaccharides.
Consequences of oxygenation. Eventually, oxygen started to accumulate in the atmosphere, with two major consequences. Oxygen likely oxidized atmospheric methane (a strong greenhouse gas) to carbon dioxide (a weaker one) and water.
Answer:
1.) 13 g C₄H₁₀
2.) 41 g CO₂
Explanation:
To find the mass of propane (C₄H₁₀) and carbon dioxide (CO₂), you need to (1) convert mass O₂ to moles O₂ (via molar mass), then (2) convert moles O₂ to moles C₄H₁₀/CO₂ (via mole-to-mole ratio from equation coefficients), and then (3) convert moles C₄H₁₀/CO₂ to mass C₄H₁₀/CO₂ (via molar mass). It is important to arrange the ratios in a way that allows for the cancellation of units. The final answers should have 2 sig figs to match the sig figs of the given value.
Molar Mass (C₄H₁₀): 4(12.011 g/mol) + 10(1.008 g/mol)
Molar Mass (C₄H₁₀): 58.124 g/mol
Molar Mass (CO₂): 12.011 g/mol + 2(15.998 g/mol)
Molar Mass (CO₂): 44.007 g/mol
Molar Mass (O₂): 2(15.998 g/mol)
Molar Mass (O₂): 31.996 g/mol
2 C₄H₁₀ + 13 O₂ ----> 8 CO₂ + 10 H₂O
48 g O₂ 1 mole 2 moles C₄H₁₀ 58.124 g
--------------- x ----------------- x -------------------------- x ------------------ =
31.996 g 13 moles O₂ 1 mole
= 13 g C₄H₁₀
48 g O₂ 1 mole 8 moles CO₂ 44.007 g
--------------- x ----------------- x -------------------------- x ------------------ =
31.996 g 13 moles O₂ 1 mole
= 41 g CO₂