<u>Answer</u>
5.the stage before a star becomes a main sequence star
<u>Explanation</u>
A protostar is a small star that is still gathering its masses. When it forms enough masses it make a parent molecular cloud.
This been the case, from the choices given, the correct statement about a protostar is;
5.the stage before a star becomes a main sequence star
Cosmic background radiation is electromagnetic radiation from the sky with no discernible source. The origin of this radiation depends on the region of the spectrum that is observed.
I have one reason the reaction take place faster because the molecules are going at a faster pace because the temperature is rising
Electron configurations:
Ge: [Ar] 3d10 4s2 4p2 => 6 electrons in the outer shell
Br: [Ar] 3d10 4s2 4p5 => 7 electrons in the outer shell
Kr: [Ar] 3d10 4s2 4p6 => 8 electrons in the outer shell
The electron affinity or propension to attract electrons is given by the electronic configuration. Remember that the most stable configuration is that were the last shell is full, i.e. it has 8 electrons.
The closer an atom is to reach the 8 electrons in the outer shell the bigger the electron affinity.
Of the three elements, Br needs only 1 electron to have 8 electrons in the outer shell, so it has the biggest electron affinity (the least negative).
Ge: needs 2 electrons to have 8 electrons in the outer shell, so it has a smaller (more negative) electron affinity than Br.
Kr, which is a noble gas, has 8 electrons and is not willing to attract more electrons at all, the it has the lowest (more negative) electron affinity of all three to the extension that really the ion is so unstable that it does not make sense to talk about a number for the electron affinity of this atom.
Explanation:
In the given question, the two metal spheres were hanged with the nylon thread.
When these two spheres were brought close together, they attracted each other. The attraction between these spheres is the result of the opposite charges between them.
The possible ways by which these two metal spheres can be charged are by induction that is touching the metal or by rubbing them.
During induction, the same charges are transferred to each sphere. In this case, either both the spheres will be negatively charged or positively charged.
It is not possible that after the sphere touch each other they will cling together because the same charge repels each other and during touching, if one sphere is neutral, then the charged one will transfer the same charge. And as we know that same charge repel each other therefore they will repel each other.