Answer:
v = 14 m/s
Explanation:
given,
radius of dip = 40 m
The passengers in a roller coaster car feel 50% heavier than their true weight.
Apparent weight



When the car is at the bottom, the weight will be acting downwards and the centripetal force will also be acting downward where as Normal force which is apparent weight will be acting in upward direction.
now,





v = 14 m/s
<span>B) 0.6 N
I suspect you have a minor error in your question. Claiming a coefficient of static friction of 0.30N is nonsensical. Putting the Newton there is incorrect. The figure of 0.25 for the coefficient of kinetic friction looks OK. So with that correction in mind, let's solve the problem.
The coefficient of static friction is the multiplier to apply to the normal force in order to start the object moving. And the coefficient of kinetic friction (which is usually smaller than the coefficient of static friction) is the multiplied to the normal force in order to keep the object moving. You've been given a normal force of 2N, so you need to multiply the coefficient of static friction by that in order to get the amount of force it takes to start the shoe moving. So:
0.30 * 2N = 0.6N
And if you look at your options, you'll see that option "B" matches exactly.</span>
Run inside if you are outdoors
.
In Electrostatics the electrical force between Two charged objects is inversely Related to the distance of separation between the two objects .
It really depends on how far or close the planet is from the sun