Kinetic of automobile
Mass m = 1,250 Kg; V = 11 m/s
Formula: K.E = 1/2 mV²
K.E = 1/2(1,250 Kg)(11 m/s)²
K.E = 75,625 J
Speed required for insect to have the same kinetic energy as automobile
Mass of insect = 0.72 g convert to Kg m = 7.2 x 10⁻⁴ Kg
K.E = 1/2 mV² Derive V =?
V = 2 K.E/m
V = √2(75,625 J)/7.2 x 10⁻4 Kg
V = √2.1 x 10⁸ m²/s²
V = 14,491.34 m/s (velocity of insect)
Answer:
As the load increases the motor generally reduces rpm, as the happens the counter emf generated in the armature decreases, causing more current to flow to
Explanation:
Answer:
Explanation:
We shall apply concept of Doppler's effect of apparent frequency to this problem . Here observer is moving sometimes towards and sometimes away from the source . When observer moves towards the source , apparent frequency is more than real frequency and when the observer moves away from the source , apparent frequency is less than real frequency . The apparent frequency depends upon velocity of observer . The formula for apparent frequency when observer is going away is as follows .
f = f₀ ( V - v₀ ) / V , f is apparent , f₀ is real frequency , V is velocity of sound and v is velocity of observer .
f will be lowest when v₀ is highest .
velocity of observer is highest when he is at the equilibrium position or at middle point .
So apparent frequency is lowest when observer is at the middle point and going away from the source while swinging to and from before the source of sound .
A graduated cylinder measures volume. This helps find density because:
Density = Mass / Volume
Answer:
Explanation:
Given
Object fall from a height of 
Considering initial velocity to be zero i.e. 
using
where v=final velocity
u=initial velocity
a=acceleration
s=displacement


(b)Average acceleration
After falling 45 m, object strike the car and comes to rest after covering a distance of 0.5 m
again using

here final velocity will be zero i.e.
initial velocity 


(c)time taken by it to stop

