<u>Answer:</u> The word for the definition of an electron in the highest occupied energy level of an atom is " valence electron".
<u>Explanation:</u>
A valence electron is an external shell electron associated with an atom in chemistry and physics that can participate in the creation of a chemical bond if the highest occupied energy level of an atom is not closed. All atoms in a single covalent bond add one valence electron to form a mutual pair.
The periodic table showcases the arrangement of valence electrons group and block wise like:
- Alkali metals have <em>n </em><em>s</em> 1 as external shell configuration like H, Li, Na, K etc.
- Alkaline metals have <em>n</em> s 2 as external hell configuration like Be, Mg, Ca etc.
- p-block comprises group 13 to 18 having general electronic configuration <em>n </em><em>s</em> 2, <em>n</em><em> p</em><em> </em>1–6.
- d-block or transition metals have general electronic configuration (<em>n</em>-1) d 1–10, <em>n </em>s 1–2.
- f-block or inner transition metals have general electronic configuration (<em>n</em>-2) f^1–14 (<em>n</em>-1) d^0-1 <em>n </em>s^2.
Answer:
Nuestro mejor amigo escuchará la música más rápido a una temperatura de 36 ºC (309.15 K)
Explanation:
Supongase que el aire se comporta como un gas ideal y que experimenta un proceso adiabático, entonces la velocidad del sonido (
), medida en metros por segundo, queda traducida en la siguiente fórmula:
(1)
Donde:
- Coeficiente de dilatación térmica, sin unidad.
- Coeficiente universal de los gases ideales, medido en kilogramo-metros cuadrados por mol-Kelvin-segundo cuadrado.
- Temperatura, medida en Kelvin.
- Masa molar, medida en kilogramos por mol.
Como se puede ver, la velocidad del sonido es directamente proporcional a la raíz cuadrada de la temperatura. Por tanto, nuestro mejor amigo escuchará la música más rápido a una temperatura de 36 ºC (309.15 K)
Harmonics, Loop and Harmonic number
Hope this helps :)
Hi!
the answer is, The sun will become surrounded by glowing clouds of gas-forming what is called a planetary nebula.
hope this helped!!
jazzy xx
Answer:
Miller Indices are [2, 4, 3]
Solution:
As per the question:
Lattice Constant, C = 
Intercepts along the three axes:



Now,
Miller Indices gives the vector representation of the atomic plane orientation in the lattice and are found by taking the reciprocal of the intercepts.
Now, for the Miller Indices along the three axes:
a = 
b = 
c = 
To find the Miller indices, we divide a, b and c by reciprocal of lattice constant 'C' respectively:
a' = 
b' = 
c' = 