Answer:
c) (7, 9)
Step-by-step explanation:
Simply add the corresponding coordinates.
59 is a tough bird to deal with; its only factors are 1 and 59.
Thus, forget about factoring. Instead, use the quadratic formula, or solve the equation by completing the square.
Please note: x2 is ambiguous. Please write x^2 to indicate "the square of 2."
Here you have 1x^2 - 12x + 59 = 0, for which a=1, b=-12 and c=59.
Use the quadratic formula: x=[-b plus or minus sqrt(b^2-4ac)] / (2a)
to find the two roots. Notice that the "discriminant" b^2 - 4ac will be negative, meaning that your two roots will be "complex."
Answer:
X^2+3x
Step-by-step explanation:
in order to get these roots, we would set up the equation to be (x)(x+3). We can then multiply it to get x^2+3x
Answer:
-2/45
Step-by-step explanation:
-4/9 is simplified and both 4 and 9 are perfect squares.
-8/20 can be reduced to -2/5 since both 8 and 20 are divisible by 4.
The difference between them is given by -4/9 - (-2/5) = (18-20)/45 = -2/45.