Answer:
x^3 + x^2 + 4x - 20.
Step-by-step explanation:
I have assumed there is a + between the 3x and the 10.
f(x) * g(x)
= (x^2 + 3x + 10)(x - 2)
= x^3 + 3x^2 + 10x - 2x^2 - 6x - 20
= x^3 + x^2 + 4x - 20.
Answer:
<h2>5</h2>
Step-by-step explanation:
<h2>8+2 -5</h2><h2>8+2=10 - 5 </h2><h2>10 -5 = 5 </h2>
<h2>(◍•ᴗ•◍)✧*。</h2>
<h2>
<em><u>PLEASE</u></em><em><u> MARK</u></em><em><u> ME</u></em><em><u> BRAINLIEST</u></em><em><u> AND</u></em><em><u> FOLLOW</u></em><em><u> ME</u></em><em><u> LOTS</u></em><em><u> OF</u></em><em><u> LOVE</u></em><em><u> FROM</u></em><em><u> MY</u></em><em><u> HEART</u></em><em><u> AND</u></em><em><u> SOUL</u></em><em><u> DARLING</u></em><em><u> TEJASWINI</u></em><em><u> SINHA</u></em><em><u> HERE</u></em><em><u> ❤️</u></em></h2>
10^5=10*10*10*10*10
the answer is 100,000
(A) Just because every digit has an equal chance of appearing does not mean that all will be equally represented. (See "gambler's fallacy")
(B) The experimental procedure isn't exactly clear, so assuming a table of digits refers to a table of just one-digit numbers, each with 0.1 chance of appearing (which means you can think of the digits 0-9), you should expect any given digit to appear about 0.1 or 10% of the time.
So if a table consists of 1000 digits, one could expect 7 to appear in 10% of the table, or about 100 times.
B) ABCD is a rhombus as all the sides are congruent (equal)