Logically both masses will collide and well make a reaction. first of all depending on the small mass it will either merge or unite with the big mass or it will bounce away from it . if this happen it will make a reaction that will affect both masses. Hope this helps if it is incorrect please let me know :)
"Frequency" just means "often-ness" ... how often something happens.
It's always expressed as
<em>(number of happenings) / (some period of time) .</em>
Answer:
-54.12 V
Explanation:
The work done by this force is equal to the difference between the final value and the initial value of the energy. Since the charge starts from the rest its initial kinetic energy is zero.

The change in electrostatic potential energy
, of one point charge q is defined as the product of the charge and the potential difference.

Answer:
The BOD concentration 50 km downstream when the velocity of the river is 15 km/day is 63.5 mg/L
Explanation:
Let the initial concentration of the BOD = C₀
Concentration of BOD at any time or point = C
dC/dt = - KC
∫ dC/C = -k ∫ dt
Integrating the left hand side from C₀ to C and the right hand side from 0 to t
In (C/C₀) = -kt + b (b = constant of integration)
At t = 0, C = C₀
In 1 = 0 + b
b = 0
In (C/C₀) = - kt
(C/C₀) = e⁻ᵏᵗ
C = C₀ e⁻ᵏᵗ
C₀ = 75 mg/L
k = 0.05 /day
C = 75 e⁻⁰•⁰⁵ᵗ
So, we need the BOD concentration 50 km downstream when the velocity of the river is 15 km/day
We calculate how many days it takes the river to reach 50 km downstream
Velocity = (displacement/time)
15 = 50/t
t = 50/15 = 3.3333 days
So, we need the C that corresponds to t = 3.3333 days
C = 75 e⁻⁰•⁰⁵ᵗ
0.05 t = 0.05 × 3.333 = 0.167
C = 75 e⁻⁰•¹⁶⁷
C = 63.5 mg/L
The current will be divided by 2