1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
True [87]
3 years ago
6

16

Physics
1 answer:
seropon [69]3 years ago
8 0

Answer:  Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic energy increases by a factor of four. Kinetic energy is proportional to the square

of the velocity. If the velocity of an object

doubles, the kinetic energy increases by a

factor of four.

• Kinetic energy is proportional to the mass. If

a bowling ball and a ping pong ball have the

same velocity, the bowling ball has much

larger kinetic energy.

• Kinetic energy is always positive.

• unit : Joule (J) = kg m

2

/s

2 Example:

If we drop a 3-kg ball from a height of h = 10 m,

the velocity when the ball hits the ground is

given by: v 2 = v0 2 +2a(y− y0 )= 0−2g(0−h)v= 2gh= 2(9.8 m/s 2 )(10 m)=14 m /s Initial:   k = 1 2 mv 2 = 0 Final:    k = 1 2 mv 2= 1 2 (3 kg)(14 m/s) 2= 294 J So as the ball falls, its kinetic energy increases. It is the gravitational force that accelerates the ball, causing the speed to increase. The increase in speed also increases the kinetic energy. The process of a force changing the kinetic energy of an object is called work. Work: Work is the energy transferred to or from an object by mean of a force acting on the object.• energy transferred to an object is positive work, e.g. gravity performs positive work on a

falling ball by transferring energy to the ball, causing the ball to speed up.• energy transferred from an object is negative work, e.g. gravity performs negative work on a ball tossed up by transferring energy from the ball, causing the ball to slow down.• both kinetic energy and work are scalars.• unit: J Work Energy Theorem: The work done is equal to the change in the kinetic energy: ∆K = K f − K i = W In the above example with the ball falling from a height of h = 10 m, the work done by gravity: W = ∆k = k f −k i = 294 J− 0J = 294 J. If a ball rises to a height of h =10 m, the work done by gravity: W = ∆k = k f −k i = 0J−294 J = −294 J. Work Done by a Force: Consider a box being dragged a distance d across a frictionless floor:

d F y x θ v 2 = v0 2 + 2ax (x − x0 ) v 2 = v0 2 +2ax d 1 2 mv 2 = 1 2 mv0 2 +max d 1 2 mv 2 − 1 2 mv0 2 = max d k f −k i = (Fcosθ)d ∴W = (Fcosθ)d• θ is the angle between the force vector and the direction of motion.• If the force is perpendicular to the direction of motion, then the work done: W =(Fcosθ)d = Fdcos90°= Fd×0= 0.• The work energy theorem and the relationship between work and force are valid only if the force does not cause any other form of energy to change, e. g. we can not apply the theorem when friction is

involved because it causes a change in the thermal energy (temperature). Work Done by Multiple Forces: The total work done by many forces acting on an object:Wtot = F1 cosθ 1 d+F2 cosθ 2 d+ F3 cosθ 3 d+L where the angles are the angle between each force and the direction of motion.  The total work is just the sum of individual work from each force:Wtot =W1 +W2 +W3 +L The work energy theorem relates the changes  in the kinetic energy to the total work performed on the object: ∆K =Wtot Example: A 3-kg box initially at rest slides 3 m down a frictionless 30° incline.  What is the work done on the object?  What is the kinetic energy and speed at the bottom?

x y N φ φ mg• The work done is performed by the force in the x direction since there is no motion in the y direction: W = F x d =(mgsinφ)d =(3 kg)(9.8 m/s 2 )(sin30°)(3 m) = 44 J Alternatively, W =(Fcosθ)d = Fcos(90°−φ)d = FsinφdH The first method of using the component of the force in the direction of motion for the calculation is easier.

You might be interested in
Which of the following explains how an executive order differs from a law?
Novay_Z [31]

Answer:

Executive Orders state mandatory requirements for the Executive Branch, and have the effect of law. They are issued in relation to a law passed by Congress or based on powers granted to the President in the Constitution and must be consistent with those authorities.

Explanation:

3 0
3 years ago
An object that is magnetic all of the time is called a.
Novosadov [1.4K]

Answer:

Bar magnets are permanent magnets. This means that their magnetism is there all the time and cannot be turned on or off as it can with electromagnets .

Explanation:

5 0
2 years ago
Give me fun facts, the most fun fact will get brainly Est (i like animals)
swat32

Answer:

here are some fun facts lol

Dolphins sleep with one eye open

Hot water will turn into ice faster than cold water.

A crocodile cannot stick its tongue out

It is physically impossible for pigs to look up into the sky

Grapes light on fire in the microwave

McDonald's once created bubblegum-flavored broccoli.

It's impossible to sneeze with your eyes open.

High Heels Were Originally Men's Shoes

The strongest muscle in the body is the tongue.

While they are hibernating, bears do not urinate

Gummy bears were originally called "dancing bears."

Explanation:

3 0
2 years ago
Read 2 more answers
A man does 4,475 J of work in the process of pushing his 2.50 103 kg truck from rest to a speed of v, over a distance of 26.0 m.
Tcecarenko [31]

Answer:

a) 1.89 m/s  b) 172.1 N

Explanation:

a)

  • Applying the work-energy theorem, if we can neglect the friction between truck and road, the total change in kinetic energy must be equal to the work done by the external forces.
  • This work, is just 4,475 J.
  • So we can write the following equation:

        \Delta K = \frac{1}{2} * m*v^{2} = 4,475 J

  • where m= mass of the truck = 2.5*10³ kg.
  • So, we can find the speed v, as follows:

        v =\sqrt{\frac{2*W}{m}} =\sqrt{\frac{2*4,475J}{2.5e3kg} }  = 1.89 m/s

b)

  • The work done by the man, is just the horizontal force applied, times the displacement produced by the force horizontally:

        W = F*d

  • We can solve for F, as follows:

        F = \frac{W}{d} = \frac{4,475 J}{26.0m} =  172.1 N

4 0
3 years ago
High blood levels of LDL cholesterol reduces your risk of developing heart
SVEN [57.7K]

Answer:

false

Explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • In a free market economy, the decisions made by buyers and sellers push the price of a good or service toward the _____. price c
    12·1 answer
  • If the skater coasts only around 65 degrees of the circle, find the magnitude of his displacement vector.
    15·1 answer
  • A 58-kg boy swings a baseball bat, which causes a 0.140-kg baseball to move toward 3rd base with a velocity of 38.0 m/s.
    6·1 answer
  • When an electron is displaced in a semiconductor, the hole that's left behind is
    14·1 answer
  • Can someone tell me the answer to this?
    13·2 answers
  • Kinetic Friction force is always less than Static Friction force.
    5·1 answer
  • 4. Increasing the mass of this freight train will
    12·1 answer
  • A student creates a model by placing raisins in bread dough and allowing the dough to rise for several hours. The student sketch
    15·1 answer
  • In a racquetball game, your opponent repeatedly hits the same type of serve off the front wall and it lands in approximately the
    12·2 answers
  • two circular plates, each with a radius of 8.22 cm, have equal and opposite charges of magnitude 3.052 μc. calculate the electri
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!