Answer:
Answer is explained in the explanation section below.
Explanation:
Solution:
We know from the Coulomb's Law that, Coulomb's force is directly proportional to the product of two charges q1 and q2 and inversely proportional to the square of the radius between them.
So,
F = 
Now, we are asked to get the greatest force. So, in order to do that, product of the charges must be greatest because the force and product of charges are directly proportional.
Let's suppose, q1 = q
So,
if q1 = q
then
q2 = Q-q
Product of Charges = q1 x q2
Now, it is:
Product of Charges = q x (Q-q)
So,
Product of Charges = qQ - 
And the expression qQ -
is clearly a quadratic expression. And clearly its roots are 0 and Q.
So, the highest value of the quadratic equation will be surely at mid-point between the two roots 0 and Q.
So, the midpoint is:
q =
q = Q/2 and it is the highest value of each charge in order to get the greatest force.
Power = (voltage) x (current) =
(120 V) x (8 A) = <em>960 watts</em>
If you start at 100% and divide it by 2 it will equal 50% then divide by 2 again and the answer will be 25%. Your answer should be 25%
Answer:
9.12267515924 m/s²
Explanation:
Here the moment created by the wheels and the moment created by the center of gravity will balance each other.
h = Height of the center of mass = 78.5 cm
d = Distance from back wheel to the center of mass = 
g = Acceleration due to gravity = 9.81 m/s²
a = Horizontal acceleration
The equation is of the form

The horizontal acceleration of the motorcycle that will make the front wheel rise off the ground is 9.12267515924 m/s²