Force = Mass * Acceleration therefore the red ball with the higher mass will have more force and greater acceleration
Answer:
Efficiency of a machine is how well the machine works and what the machine is capable of doing.
Mechanical advantage=Load/Effort.
720/180=4
We know that the change in momentum is equals to the product of force and time that is impulse (
). Therefore, we need to determine the value of that the water is in air by using the second equation of motion,

Here, u is initial velocity which is zero.
.
Thus, impulse

From Newton`s second law,

Therefore, impulse

Given,
and 
Substituting these values, we get
Change in momentum = impulse
.
Answer:570.54 N
Explanation:
Given
mass of man=76 kg

As man is standing over inclined building therefore
its weight has two components i.e. sin and cos component
Force perpendicular to inclined wall

F=570.54 N
Answer:
Explanation:
The application of Gauss's law is used in the derivation as shown with detailed step by step in the attached file.
The potential difference on this spherical capacitor is ΔV = Va - Vb = kQ/a - kQ/b = kQ(1/a - 1/b)