Answer:
The coefficient of static friction is 0.29
Explanation:
Given that,
Radius of the merry-go-round, r = 4.4 m
The operator turns on the ride and brings it up to its proper turning rate of one complete rotation every 7.7 s.
We need to find the least coefficient of static friction between the cat and the merry-go-round that will allow the cat to stay in place, without sliding. For this the centripetal force is balanced by the frictional force.

v is the speed of cat, 

So, the least coefficient of static friction between the cat and the merry-go-round is 0.29.
The answer to the given question above would be option B. If a topographic map included a 6,000 ft. mountain next to an area of low hills, the statement that best describe the contour lines on the map is this: <span>The contour lines around the mountain would be very close together. Hope this helps.</span>
Answer:
To determine the minimum blade length, add 1" to the workpiece thickness. One type of material, and some materials can be cut by more than one type of blade. No matter the material, there's likely a jigsaw blade designed specifically for. Armed with the right blade, follow these pointers to make your work go (and cut) .
Explanation:
Answer:
Filtration is a method for separating an insoluble solid from a liquid. When a mixture of sand and water is filtered: the sand stays behind in the filter paper (it becomes the residue ) the water passes through the filter paper (it becomes the filtrate )
Explanation:
Listo!
We have the equation of motion
, where s is the displacement, a is the acceleration, u is the initial velocity and t is the time taken.
Here displacement = 135 m, Initial velocity = 0 m/s, acceleration = 9.81
Substituting

A box falls out of a stationary helicopter hovering 135 m above the ground will take 5.25 seconds to reach the ground.