Answer:
so idc![\sqrt[n]{x} \sqrt{x} \alpha \pi x^{2} \\ \left \{ {{y=2} \atop {x=2}} \right. x_{123} \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right]](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%7D%20%5Csqrt%7Bx%7D%20%5Calpha%20%5Cpi%20x%5E%7B2%7D%20%5C%5C%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20x_%7B123%7D%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D)
443
Step-by-step explanation: its 2 6\7
AVERAGE between 90 and 100%
means not including 90 and 100% but not including 90 or 100%
average=(sum of values in set)/(how many values in the set)
so
4 exams, so there are 4 values
average=(sum)/4
the sum is the known+unknwon
sum=76+99+86+x
so
90<span><</span>average and average <span><</span>100
or
90<span><</span>average<span><</span>100
lets say average=a
a=sum/number
a=(76+99+86+x)/4
90<(76+99+86+x)/4<100
90<(76+99+86+x)/4 and (76+99+86+x)/4<100
solve each for x and find intersection
90<span><</span>(76+99+86+x)/4
times 4 both sides
360<span><</span>261+x
minus 261 both sides
99<span><</span>x
(76+99+86+x)/4<u><</u>100
times 4 both sides
261+x<u><</u>400
minus 261 both sides
x<u><</u>139
so
99<u><</u>x<u><</u>139
since max score is 100
99<u><</u>x<u><</u>100
interval notaion is
[99,100]
answer is 2nd one
Answer:
There are infinitely many solutions to the system because the equations represent the same line
Answer:
Always
Step-by-step explanation: