Answer:
polymer
ithink this so I wrote it cause I am a beginner
Answer:
See explanation
Explanation:
The elements in group form univalent positive ions and element in group 17 form univalent negative ions. Hence, when a group 1 element reacts with a group 17 element, a compound of the sort MX is formed. Hence, when a group 1 element reacts with bromine, a salt is formed with the general formula MBr.
Elements of group 1 are highly electro positive metals. They react with water to form the metal hydroxide and release hydrogen gas. Hence, when group 1 elements react with water, hydrogen gas is released.
A group 1 element forms a univalent positive ion while a group 16 element forms a divalent negative ion. Hence, when a groups 1 element reacts with oxygen, the compound formed must have the general formula M2O.
The reactivity of group 1 metal increases down the group hence Cs is the most reactive group 1 element.
Lithium displays a slightly different chemistry from other group 1 elements because of its small size.
Answer : The mole ratios of Hydrazine to Hydrogen peroxide is 1 : 2 and
the mole ratios of Hydrazine to water is 1 : 4.
Explanation :
The balanced chemical equation is,

According to the given reaction,
1 mole of Hydrazine react with the 2 moles of Hydrogen peroxide.
Therefore, the mole ratios of Hydrazine to Hydrogen peroxide is 1 : 2
And in case of Hydrazine and water,
1 mole of Hydrazine gives 4 moles of water.
Therefore, the mole ratios of Hydrazine to water is 1 : 4
Answer:
Physical Property
Explanation:
Density, mass, volume, color, melting and boiling points, etc. are all physical properties. No matter what changes, the chemical makeup stays the same.
Flamability, acidity, toxicity, etc. are chemical properties, because they chemically change the makeup of the object/thing.
Answer:
- <em>To balance a chemical equation it may be necessary to adjust the </em><u>coefficients.</u>
Explanation:
The <em>coefficients</em> of a <em>chemical equation</em> are the numbers that you put in front of each reactant and product. They are used to balance the equation and comply with the law of mass conservation.
By adjusting the coefficients you obtain the relative amounts (moles) of each product and reactant, i.e. the mole ratios.
Here an example.
The first information is what is called a word equation. E.g. nitrogen and hydrogen react to form ammonia:
- Word equation: hydrogen + nitrogen → ammonia
- Skeleton equation: H₂ + N₂ → NH₃
This equation shows the chemical formulae but it is not balanced. The law of mass conservation is not observed.
So, in order to comply with the law of mass conservation you adjust the coefficients as follow.
- Balanced chemical equation: 3H₂ + N₂ → 2NH₃
As you see, it was necessary to modify the coefficients. Now the law of conservation of mass is observed and you get the mole ratios:
- 3 mol H₂ : 1 mol N₂ : 2 mol NH₃