1. how does warming up help?
2. what does warming up do?
3. what would happen if you don’t warm up?
Answer:
pH = 10.75
Explanation:
To solve this problem, we must find the molarity of [OH⁻]. With the molarity we can find the pOH = -log[OH⁻]
Using the equation:
pH = 14 - pOH
We can find the pH of the solution.
The molarity of Ca(OH)₂ is 2.8x10⁻⁴M, as there are 2 moles of OH⁻ in 1 mole of Ca(OH)₂, the molarity of [OH⁻] is 2*2.8x10⁻⁴M = 5.6x10⁻⁴M
pOH is
pOH = -log 5.6x10⁻⁴M
pOH = 3.25
pH = 14-pOH
<h3>pH = 10.75</h3>
The first ionisation energy of silicon is greater than that of phosphorus.
Answer:
83.64%.
Explanation:
∵ The percent yield = (actual yield/theoretical yield)*100.
actual yield of CO₂ = 2300 g.
- We need to find the theoretical yield of CO₂:
For the reaction:
<em>CH₄ + 2O₂ → 2H₂O + CO₂,</em>
1.0 mol of CH₄ react with 2 mol of O₂ to produce 2 mol of H₂O and 1.0 mol of CO₂.
- Firstly, we need to calculate the no. of moles of 1000 g of CH₄ using the relation:
<em>no. of moles of CH₄ = mass/molar mass</em> = (1000 g)/(16.0 g/mol) = <em>62.5 mol.</em>
<u><em>Using cross-multiplication:</em></u>
1.0 mol of CH₄ produces → 1.0 mol of CO₂, from stichiometry.
∴ 62.5 mol of CH₄ produces → 62.5 mol of CO₂.
- We can calculate the theoretical yield of carbon dioxide gas using the relation:
∴ The theoretical yield of CO₂ gas = n*molar mass = (62.5 mol)(44.0 g/mol) = 2750 g.
<em>∵ The percent yield = (actual yield/theoretical yield)*100.</em>
actual yield = 2300 g, theoretical yield = 2750 g.
<em>∴ the percent yield</em> = (2300 g/2750 g)*100 = <em>83.64%.</em>