I think the answer is Passive
Answer:
The correct answer is - segregation.
Explanation:
The law of segregation states that out of two factors or alleles of a gene located in an organism, only one allele or factor is distributed to each sperm cell or egg cell (gamete) randomly, So, the segregation of the alleles are random and only one allele is distributed to each gamete according to this law.
The law of segregation helps in making a different combination of alleles in a particular species or population and leads to variation in genetics. It makes sure that traits distribute to each generation randomly.
In an open system such as a campfire, matter can <span>lose particles, gain particles or exchange particles.</span>
The given question is incomplete, the complete question is attached in the image format with the answer:
Answer:
1. aspartic acid :
asparagine
methionine
lysine
threonine
2.glutamic acid :
glutamine
proline
arginine
ornithine
3. pyruvic acid :
alanine
valine
leucine
isoleucine
4. chorismic acid :
phenylalanine
tyrosine
trypthophan
5. serine :
cysterine
glycine.
The randomness in the alignment of recombined chromosomes at the metaphase plate, coupled with the crossing over events between nonsister chromatids, are responsible for much of the genetic variation in the offspring. To clarify this further, remember that the homologous chromosomes of a sexually reproducing organism are originally inherited as two separate sets, one from each parent. Using humans as an example, one set of 23 chromosomes is present in the egg donated by the mother. The father provides the other set of 23 chromosomes in the sperm that fertilizes the egg. Every cell of the multicellular offspring has copies of the original two sets of homologous chromosomes. In prophase I of meiosis, the homologous chromosomes form the tetrads. In metaphase I, these pairs line up at the midway point between the two poles of the cell to form the metaphase plate. Because there is an equal chance that a microtubule fiber will encounter a maternally or paternally inherited chromosome, the arrangement of the tetrads at the metaphase plate is random. Thus, any maternally inherited chromosome may face either pole. Likewise, any paternally inherited chromosome may also face either pole. The orientation of each tetrad is independent of the orientation of the other 22 tetrads.
Explanation: