Problem A
Usually the number of bits in a byte is 8 or 16 or 32 and recently 64. You don't have to write a formula to restrict it to this number of bits. You are not asked to do so. The general formula is 2^n - 1 for the problem of Millie and her golden keys. Somehow the system can be made to choose the right number of bits. Apple IIe s for example, used 8 bits and there was a location that told the processor that fact.
2^n - 1 <<<<< Answer
Problem B
In this case n = 4
2^n - 1 = 2^4 - 1 = 16 - 1 = 15
Millie can collect 15 keys <<<<<< Answer
Hi friend!
I presume you mean "What is the absolute value of -44!
Well an absolute value is always positive. So the absolute value of -44 is 44!
Hope I helped!
If not, tell me more clearly what you need!
Hey there! :)
Answer:
y = x - 3.
Step-by-step explanation:
Given:
Slope = 1
Point on line: (8, 5)
Plug these into the formula y = mx + b, where:
m = slope
x = x coordinate of point
y = y coordinate of point
5 = 1(8) + b
5 = 8 + b
Subtract both sides by 8:
5 - 8 = 8 -8 + b
-3 = b
Rewrite the equation:
y = x - 3.
NOT MY WORDS TAKEN FROM A SOURCE!
(x^2) <64 => (x^2) -64 < 64-64 => (x^2) - 64 < 0 64= 8^2 so (x^2) - (8^2) < 0 To solve the inequality we first find the roots (values of x that make (x^2) - (8^2) = 0 ) Note that if we can express (x^2) - (y^2) as (x-y)* (x+y) You can work backwards and verify this is true. so let's set (x^2) - (8^2) equal to zero to find the roots: (x^2) - (8^2) = 0 => (x-8)*(x+8) = 0 if x-8 = 0 => x=8 and if x+8 = 0 => x=-8 So x= +/-8 are the roots of x^2) - (8^2)Now you need to pick any x values less than -8 (the smaller root) , one x value between -8 and +8 (the two roots), and one x value greater than 8 (the greater root) and see if the sign is positive or negative. 1) Let's pick -10 (which is smaller than -8). If x=-10, then (x^2) - (8^2) = 100-64 = 36>0 so it is positive
2) Let's pick 0 (which is greater than -8, larger than 8). If x=0, then (x^2) - (8^2) = 0-64 = -64 <0 so it is negative3) Let's pick +10 (which is greater than 10). If x=-10, then (x^2) - (8^2) = 100-64 = 36>0 so it is positive Since we are interested in (x^2) - 64 < 0, then x should be between -8 and positive 8. So -8<x<8 Note: If you choose any number outside this range for x, and square it it will be greater than 64 and so it is not valid.
Hope this helped!
:)