Flow of electrons through a copper wire
Answer:
The coefficient of kinetic friction 
Explanation:
From the question we are told that
The length of the lane is 
The speed of the truck is 
Generally from the work-energy theorem we have that

Here N is the normal force acting on the truck which is mathematically represented as
is the change in kinetic energy which is mathematically represented as
=>
=>

=> 
=> 
We know the equation
weight = mass × gravity
To work out the weight on the moon, we will need its mass, and the gravitational field strength of the moon.
Remember that your weight can change, but mass stays constant.
So using the information given about the earth weight, we can find the mass by substituting 100N for weight, and we know the gravity on earth is 10Nm*2 (Use the gravitational field strength provided by your school, I am assuming yours in 10Nm*2)
Therefore,
100N = mass × 10
mass= 100N/10
mass= 10 kg
Now, all we need are the moon's gravitational field strength and to apply this to the equation
weight = 10kg × (gravity on moon)
38*10=380 N
To be more exact, 38 should be multiplied by 9.8 instead of 10.
Answer:
Your answer is: K.E = 8.3 J
Explanation:
If the height (h) = 169.2 meters (m) and the mass (m) is 0.005 kilograms (kg) the total energy will be kinetic energy which is equal to the potential energy.
K.E = P.E and also P.E equals to mgh
Then you substitute all the parameters into the formula ↓
P.E = 0.005 × 9.81 × 169.2
P.E = 8.2908 J
So your answer is 8.2908 but if you round it is K.E = 8.3