Answer: 16.3 seconds
Explanation: Given that the
Initial velocity U = 80 ft/s
Let's first calculate the maximum height reached by using third equation of motion.
V^2 = U^2 - 2gH
Where V = final velocity and H = maximum height.
Since the toy is moving against the gravity, g will be negative.
At maximum height, V = 0
0 = 80^2 - 2 × 9.81 × H
6400 = 19.62H
H = 6400/19.62
H = 326.2
Let's us second equation of motion to find time.
H = Ut - 1/2gt^2
Let assume that the ball is dropped from the maximum height. Then,
U = 0. The equation will be reduced to
H = 1/2gt^2
326.2 = 1/2 × 9.81 × t^2
326.2 = 4.905t^2
t^2 = 326.2/4.905
t = sqrt( 66.5 )
t = 8.15 seconds
The time it will take for the rocket to return to ground level will be 2t.
That is, 2 × 8.15 = 16.3 seconds
The work-energy principle states that an increase in the kinetic energy of a rigid body is caused by an equal amount of positive work done on the body by the resultant force acting on that body. Conversely, a decrease in kinetic energy is caused by an equal amount of negative work done by the resultant force.
According to Hooke's Law formula. The force is proportional to the displacement of the spring. I believe
The student’s suggestion who provides enough evidence to be able to determine the value of each resistor is student D.
<h3>What is current?</h3>
The current is the stream of charges which flow inside the conductors when connected across the end of voltage.
For the given set of parallel resistors, we need to find the resistance of each resistor.
From the Ohm's law, V =IR
R = V/I
Resistance value depends upon the voltage difference across the resistor and the current flowing through that resistance.
Thus, the student D gives enough evidence to find resistance of the circuit is
Learn more about current.
brainly.com/question/10677063
#SPJ1