Answer:
The time it takes the ball to fall 3.8 meters to friend below is approximately 0.88 seconds
Explanation:
The height from which the student tosses the ball to a friend, h = 3.8 meters above the friend
The direction in which the student tosses the ball = The horizontal direction
Given that the ball is tossed in the horizontal direction, and not the vertical direction, the initial vertical component of the velocity of the ball = 0
The equation of the vertical motion of the ball can therefore, be represented by the free fall equation as follows;
h = 1/2 × g × t²
Where;
g = The acceleration due gravity of the ball = 9.81 m/s²
t = The time of motion to cover height, h
Then height is already given as h = 3.8 m
Substituting gives;
3.8 = 1/2 × 9.81 × t²
t² = 3.8/(1/2 × 9.81) ≈ 0.775 s²
∴ t = √0.775 ≈ 0.88 seconds
The time it takes the ball to fall 3.8 meters to friend below is t ≈ 0.88 seconds.
The statement that best describes how the windmill technology benefits the environment is this: WINDMILLS DO NOT POLLUTE THE ENVIRONMENT.
Constructing a windmill involves harnessing the power of the wind to generate electricity. This type of electricity generation has no side effects whatsoever. It is environmental friendly and does not pollute the environment.
The time taken for the athlete to finish the race is 20 s (Option A)
<h3>What is power? </h3>
Power is simply defined as the rate at which work is done. It can be expressed mathematically as
Power (P) = work (W) / time (t)
But
Work = weight × distance
Therefore,
Power = (weight × distance ) / time
<h3>How to determine the time </h3>
- Mass (m) = 55 Kg
- Acceleration due to gravity (g) = 9.8 m/s²
- Weight = mg = 55 × 9.8 = 539 N
- Power (P) = 5.4 KW = 5.4 × 1000 = 5400 W
- Distance (d) = 200 m
- Time (t) =?
Power = (weight × distance ) / time
5400 = (539 × 200) / t
5400 = 107800 / t
Cross multiply
5400 × t = 107800
Divide both side by 5400
t = 107800 / 5400
t = 20 s
Learn more about power:
brainly.com/question/5684937
#SPJ1
Answer: <u>elastically</u> deformed or <u>non-permanently</u> deformed
Explanation:
According to classical mechanics, there are two types of deformations:
-Plastic deformation (also called irreversible or permanent deformation), in which the material does not return to its original form after removing the applied force, therefore it is said that the material was permanently deformed.
This is because the material undergoes irreversible thermodynamic changes while it is subjected to the applied forces.
-Elastic deformation (also called reversible or non-permanent deformation), in which the material returns to its original shape after removing the applied force that caused the deformation.
In this case t<u>he material also undergoes thermodynamic changes, but these are reversible, causing an increase in its internal energy by transforming it into elastic potential energy.</u>
<u />
Therefore, the situation described in the question is related to elastic deformation.
The net force on particle particle q1 is 13.06 N towards the left.
<h3>
Force on q1 due to q2</h3>
F(12) = kq₁q₂/r₂
F(12) = (9 x 10⁹ x 13 x 10⁻⁶ x 7.7 x 10⁻⁶)/(0.25²)
F(12) = -14.41 N (towards left)
<h3>Force
on q1 due to q3</h3>
F(13) = (9 x 10⁹ x 7.7 x 10⁻⁶ x 5.9 x 10⁻⁶)/(0.55²)
F(13) = 1.352 N (towards right)
<h3>Net force on q1</h3>
F(net) = 1.352 N - 14.41 N
F(net) = -13.06 N
Thus, the net force on particle particle q1 is 13.06 N towards the left.
Learn more about force here: brainly.com/question/12970081
#SPJ1