Answer:
D.) 1m/s
Explanation:
Assume the initial angle of the swing is 12.8 degree with respect to the vertical. We can calculate the vertical distance from this initial point to the lowest point by first calculate the vertical distance from this point the the pivot point:

where L is the pendulum length
The vertical distance from the lowest point to the pivot point
is the pendulum length 2m
this means the vertical distance from this initial point to the lowest point is simply:

As the pendulum travel (vertically) from the initial point to the bottom point, its potential energy is converted to kinetic energy:


where m is the mass of the pendulum, g = 10 m/s2 is the constant gravitational acceleration, h = 0.05 is the vertical it travels, v is the pendulum velocity at the bottom, which we are trying to solve for.
The m on both sides of the equation cancel out


so D is the correct answer
Answer:
4,524,660 N
Explanation:
Assuming the submarine's density is uniform, 1/9th of the submarine's mass is equal to the mass of the displaced water.
m/9 = (1026 kg/m³) (50 m³)
m = 461,700 kg
mg = 4,524,660 N
The statement would be False. T<span>he potential energy of a membrane potential comes solely from the difference in electrical charge across the membrane. In addition to that, membrane potential actually regulates the potential difference of nerve cells across the membrane estimated at 70 mV.</span>