Answer:
Zero
Explanation:
Two long parallel wires each carry the same current I in the same direction. The magnetic field in wire 1 is given by :

Magnetic force acting in wire 2 due to 1 is given by :


Similarly, force acting in wire 1 is given by :
According to third law of motion, the force acting in wire 1 will be in opposite direction to wire 2 as :

So, the total magnetic field at the point P midway between the wires is in what direction will be zero as the the direction of forces are in opposite direction.
This question requires the use of the equation of motion:
v = u + at [v is final velocity (0), u is initial velocity (24), a is acceleration, t is time (13)]
to calculate the acceleration. This can then be multiplied by the mass of the plane to obtain the net force via:
F = ma (F is force, m is mass, a is acceleration)
First, we calculate the acceleration:
0 = 24 + 13(a)
a = -24/13 m/s^2
The force is then:
F = 90000 * (-24/13)
F = -1.66*10^5 Newtons
The negative sign indicates that the force and acceleration are in the opposite direction as the velocity (since we took velocity to be positive)
Hey
Potential Difference given is : 2V
Resistance is : 2 ohms
By Ohm's Law, one can easily utilize the relation :

Where, { v , i , r } are the potential difference, current and Resistance Respectively.
Hence,

Hence, the Current is 1 Ampere
According to Ohm's law for a portion of the circuit we have:
U=RI=>I=U/R=24/3=8 A
The correct answer is B