1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mixer [17]
2 years ago
13

When a gas is heated, it absorbs 196 joules of heat from the surroundings. At the same time, the gas expands, doing pressure-vol

ume work (P · V work) on the surroundings that is equal to 322 joules.
(a) Determine whether the amounts of heat (q) and work (w) exchanged should have positive or negative signs. heat (q) positive negative work (w) positive negative

(b) Calculate the change in internal energy (ΔE) of the gas. J

(c) Determine whether one or more of the following is a state function:

internal energy (E) of a system,
change in internal energy (ΔE) of a system,
heat (q) absorbed or released by a system,
work (w) done on or by a system.
Physics
1 answer:
timurjin [86]2 years ago
7 0

Answer:

(a) q positive; w negative.

(b) ΔE = -126 J

(c) E and ΔE

Explanation:

<em>(a) Determine whether the amounts of heat (q) and work (w) exchanged should have positive or negative signs. heat (q) positive negative work (w) positive negative</em>

By convention, when the system absorbs heat from the surroundings, its sign is positive, that is, q = 196 J.

By convention, when the system exerts work on the surroundings, its sign is negative, that is, w = -322 J.

<em>(b) Calculate the change in internal energy (ΔE) of the gas. J</em>

The change in internal energy (ΔE) can be calculated using the following expression.

ΔE = q + w

ΔE = 196 J + (-322 J) = -126 J

<em>(c) Determine whether one or more of the following is a state function: </em>

<em> internal energy (E) of a system, </em>

<em>change in internal energy (ΔE) of a system, </em>

<em>heat (q) absorbed or released by a system, </em>

<em>work (w) done on or by a system.</em>

<em />

E and ΔE are state functions (they only depend on the states of the gas), whereas q and w depend on the trajectory.

You might be interested in
A bell is rung. What best describes the density of air around the bell? The air density does not change. The air density increas
dezoksy [38]

I think the closest possible answer to this question is The air density increases and decreases repeatedly before returning to normal.Thank you for your question. Please don't hesitate to ask in Brainly your queries. 
7 0
2 years ago
Read 2 more answers
Summarize the steps you might use to carry out an investigation using scientific methods
melomori [17]
1. Make an observation
2. Form a question
3. Form a hypothesis
4. Conduct an experiment
5. Analyze the data and draw your conclusion
8 0
3 years ago
A uniform electric field is created by two parallel plates separated by a distance of 0.04 m. What is the magnitude of the elect
FromTheMoon [43]

Complete question:

A uniform electric field is created by two parallel plates separated by a

distance of 0.04 m. What is the magnitude of the electric field established

between the plates if the potential of the first plate is +40V and the second

one is -40V?

Answer:

The magnitude of the electric field established between the plates is 2,000 V/m

Explanation:

Given;

distance between two parallel plates, d = 0.04 m

potential between first and second plate, = +40V and -40V respectively

The magnitude of the electric field established between the plates is calculated as;

E = ΔV / d

where;

ΔV is change in potential between two parallel plates;

d is the distance between the plates

ΔV = V₁ -V₂

ΔV = 40 - (-40)

ΔV = 40 + 40

ΔV = 80 V

E = ΔV / d

E = 80 / 0.04

E = 2,000 V/m

Therefore, the magnitude of the electric field established between the plates is 2,000 V/m

7 0
2 years ago
(Q004) During World War II, the military imaged the seafloor by sending pulses of sound waves down through the water and measuri
valkas [14]

Answer:

Sonar

Explanation:

Sonar is a technique that involves the use of sounds in viewing substances in a water medium to aid movement or communication. It makes use of the advantage of sound waves traveling faster and farther in water when compared to other types of waves such as light waves.

During World War II, the military employed the use of SONAR in imaging the seafloor by sending pulses of sound waves down through the water and measuring the time it took for the sound to bounce off the seafloor and return to the receiver.

7 0
3 years ago
irius, the brightest star in the sky, is 2.6 parsecs (8.6 light-years) from Earth, giving it a parallax of 0.379 arcseconds. Ano
Norma-Jean [14]

The actual distance of Regulus from Earth is 23.81 parsecs.

Given:

Parallax of Regulus, p = 0.042 arc seconds

Calculation:

When an observer changes their position, an apparent change in the object's position takes place. This change can be calculated using the angle ( or semi-angle) made by the observer and object i.e. the angle made between the two lines of observation from the object to the observer.

Thus from the relation of parallax of a celestial body we get:

S = 1/ tan p ≈ 1 / p

where S is the actual distance between the object and the observer

            p is the parallax angle observed

Here for Regulus, we get:

S = 1 / p

  = 1 / (0.042)                                     [ 1 parsecs = 1 arcseconds ]

  = 23.81 parsecs

We know that,

1 parsecs = 3.26 light-years = 206,000 AU

Converting the actual distance into light years we get:

23.81 parsecs = 23.81 × (3.26 light yrs) = 77.658 light-years

Therefore, the actual distance of Regulus from Earth is 23.81 parsecs which is 77.658 in light years.

Learn more about astronomical units here:

<u>brainly.com/question/16471213</u>

#SPJ4

6 0
1 year ago
Other questions:
  • Compare the Vf calculated at the point of impact to the horizontal velocity you calculated using Δx and Δy. Were the vf and the
    8·1 answer
  • A small rubber wheel drives the rotation of a larger pottery wheel by running along its edge. The small wheel radius is 1.2 cm,
    7·1 answer
  • Sand is pouring out of a pipe and is forming a conical pile on the ground. The radius of the pile is increasing at a rate of 2 f
    7·1 answer
  • To navigate, a porpoise emits a sound wave that has a wavelength of 4.9 cm. The speed at which the wave travels in seawater is 1
    6·1 answer
  • Gary needs to move a chair that is 20 pounds at a distance of 5 feet. How much work will he need to produce?
    6·2 answers
  • Help me solve this please
    15·1 answer
  • An open-pipe resonator has a length of 2.39 m. Calculate the frequency of its third harmonic if the speed of sound is 343 m/s.
    8·1 answer
  • ) A friend of yours complains that he often has lower back pain. One day while he picks up a package, you notice he bends at his
    6·1 answer
  • Differentiate between moments and momentum​
    8·1 answer
  • At the instant its angular displacement is 0.32 rad, the angular acceleration of a physical pendulum is -630 rad/s2. What is its
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!