Answer:
<h2>
206.67N</h2>
Explanation:
The sum of force along both components x and y is expressed as;
The magnitude of the net force which is also known as the resultant will be expressed as
To get the resultant, we need to get the sum of the forces along each components. But first lets get the acceleration along the components first.
Given the position of the object along the x-component to be x = 6t² − 4;
Similarly,
Hence, the magnitude of the net force acting on this object at t = 2.15 s is approximately 206.67N
Answer:
t = 96.1 nm
Explanation:
For strong reflection through liquid layer we know that the path difference between two reflected light rays must be integral multiple of wavelength
now we know that the path difference of two reflected light from thin liquid layer is given as
here we know that
t = thickness of layer
N = 0 (for minimum thickness of layer)
now we have
Answer:
12 ounces of beer plus 12 ounces of wine plus 3 ounces of liquor are equivalent to 6 drinks.
Explanation:
In the United States, a standard "drink" of beer has 12 ounces, a standard "drink" of wine has 5 ounces and standard drink of liquor has 1.5 ounces. Then, we obtain the quantity of drinks by dividing the total volume of each drink by its respective unit volume and summing each term. That is:
12 ounces of beer plus 12 ounces of wine plus 3 ounces of liquor are equivalent to 6 drinks.
Answer:
The net force acting on this object is 180.89 N.
Explanation:
Given that,
Mass = 3.00 kg
Coordinate of position of
Coordinate of position of
Time = 2.00 s
We need to calculate the acceleration
For x coordinates
On differentiate w.r.to t
On differentiate again w.r.to t
The acceleration in x axis at 2 sec
For y coordinates
On differentiate w.r.to t
On differentiate again w.r.to t
The acceleration in y axis at 2 sec
The acceleration is
We need to calculate the net force
The magnitude of the force
Hence, The net force acting on this object is 180.89 N.
John weighs 200 pounds.
In order to lift himself up to a higher place, he has to exert force of 200 lbs.
The stairs to the balcony are 20-ft high.
In order to lift himself to the balcony, John has to do
(20 ft) x (200 pounds) = 4,000 foot-pounds of work.
If he does it in 6.2 seconds, his RATE of doing work is
(4,000 foot-pounds) / (6.2 seconds) = 645.2 foot-pounds per second.
The rate of doing work is called "power".
(If we were working in the metric system (with SI units),
the force would be in "newtons", the distance would be in "meters",
1 newton-meter of work would be 1 "joule" of work, and
1 joule of work per second would be 1 "watt".
Too bad we're not working with metric units.)
So back to our problem.
John has to do 4,000 foot-pounds of work to lift himself up to the balcony,
and he's able to do it at the rate of 645.2 foot-pounds per second.
Well, 550 foot-pounds per second is called 1 "horsepower".
So as John runs up the steps to the balcony, he's doing the work
at the rate of
(645.2 foot-pounds/second) / (550 ft-lbs/sec per HP)
= 1.173 Horsepower. GO JOHN !
(I'll betcha he needs a shower after he does THAT 3 times.)
_______________________________________________
Oh my gosh ! Look at #26 ! There are the metric units I was talking about.
Do you need #26 ?
I'll give you the answers, but I won't go through the explanation,
because I'm doing all this for only 5 points.
a). 5
b). 750 Joules
c). 800 Joules
d). 93.75%
You're welcome.
And #27 is 0.667 m/s .