Answer:
5900J
Explanation:
Work=Forse*Distance
work = J, Jewls
100*59=5900
Hop this helps and can u think about brainlist
i put a picture on how to find these answers, if u got any more questions im here
Answer:
Explanation:

Subtract both sides by
:

Divide both sides by -2*a:

Add both sides by
:

Subtract both sides by
:

Answer:
The options are
a. Sally is a very creative kind of person who likes to build things.
b. Jerry only works because he receives a very large income.
c. Rikki is usually shy, but at work she appears to be quite outgoing.
d. Maury gives money to charities because he wants other people to think he is very generous.
The answer is c. Rikki is usually shy, but at work she appears to be quite outgoing.
Lewin's interactionist perspective explains that an individual’s behavior is usually dependent on his personal behavior/ trait and the environment. The best option is that Rikki is usually shy which is her personal behavior but at work she appears to be quite outgoing due to her environment.
Answer:
okay with you if you want to
Answer:
E = (-3.61^i+1.02^j) N/C
magnitude E = 3.75N/C
Explanation:
In order to calculate the electric field at the point P, you use the following formula, which takes into account the components of the electric field vector:
(1)
Where the minus sign means that the electric field point to the charge.
k: Coulomb's constant = 8.98*10^9Nm^2/C^2
q = -4.28 pC = -4.28*10^-12C
r: distance to the charge from the point P
The point P is at the point (0,9.83mm)
θ: angle between the electric field vector and the x-axis
The angle is calculated as follow:

The distance r is:

You replace the values of all parameters in the equation (1):
![\vec{E}=(8.98*10^9Nm^2/C^2)\frac{4.28*10^{-12}C}{(10.21*10^{-3}m)}[-cos(15.84\°)\hat{i}+sin(15.84\°)\hat{j}]\\\\\vec{E}=(-3.61\hat{i}+1.02\hat{j})\frac{N}{C}\\\\|\vec{E}|=\sqrt{(3.61)^2+(1.02)^2}\frac{N}{C}=3.75\frac{N}{C}](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%3D%288.98%2A10%5E9Nm%5E2%2FC%5E2%29%5Cfrac%7B4.28%2A10%5E%7B-12%7DC%7D%7B%2810.21%2A10%5E%7B-3%7Dm%29%7D%5B-cos%2815.84%5C%C2%B0%29%5Chat%7Bi%7D%2Bsin%2815.84%5C%C2%B0%29%5Chat%7Bj%7D%5D%5C%5C%5C%5C%5Cvec%7BE%7D%3D%28-3.61%5Chat%7Bi%7D%2B1.02%5Chat%7Bj%7D%29%5Cfrac%7BN%7D%7BC%7D%5C%5C%5C%5C%7C%5Cvec%7BE%7D%7C%3D%5Csqrt%7B%283.61%29%5E2%2B%281.02%29%5E2%7D%5Cfrac%7BN%7D%7BC%7D%3D3.75%5Cfrac%7BN%7D%7BC%7D)
The electric field is E = (-3.61^i+1.02^j) N/C with a a magnitude of 3.75N/C