Answer:
90%
Explanation:
if you lose 10% of a 100 you get 90
Answer:
Part a)

Part b)

Part C)

Part d)
Due to large magnitude of friction between road and the car the momentum conservation may not be valid here as momentum conservation is valid only when external force on the system is zero.
Explanation:
Part a)
As we know that car A moves by distance 6.1 m after collision under the frictional force
so the deceleration due to friction is given as



now we will have




Part b)
Similarly for car B the distance of stop is given as 4.4 m
so we will have


Part C)
By momentum conservation we will have



Part d)
Due to large magnitude of friction between road and the car the momentum conservation may not be valid here as momentum conservation is valid only when external force on the system is zero.
The gravitational force between two objects is given by:

where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is their separation
In this problem, the first object has a mass of

, while the second "object" is the Earth, with mass

. The distance of the object from the Earth's center is

; if we substitute these numbers into the equation, we find the force of gravity exerted by the Earth on the mass of 0.60 kg:
Complete Question
The speed of a transverse wave on a string of length L and mass m under T is given by the formula

If the maximum tension in the simulation is 10.0 N, what is the linear mass density (m/L) of the string
Answer:

Explanation:
From the question we are told that
Speed of a transverse wave given by

Maximum Tension is 
Generally making
subject from the equation mathematically we have




Therefore the Linear mass in terms of Velocity is given by

Well, you gave us the formula to calculate power from work and time,
but you didn't give us the formula for work. We have to know that.
Work = (force) x (distance)
The work to raise Sara to the top of the hill is
Work = (300 N) x (15 meters)
= 4,500 newton-meters = 4,500 joules .
Now we're ready to use the formula that you gave us. (Thank you.)
Power = (work) / (time)
= (4,500 joules) / (10 seconds)
450 joules/second = 450 watts.