Answer: it is D. it is the only possible answer. use the process of elimination. which answers make sense?
Answer: 1018.26 m/s
Explanation:
Approaching the orbit of the Moon around the Earth to a circular orbit (or circular path), we can use the equation of the speed of an object with uniform circular motion:
Where:
is the speed of travel of the Moon around the Earth
is the Gravitational Constant
is the mass of the Earth
is the distance from the center of the Earth to the center of the Moon
Solving:
This is the speed of travel of the Moon around the Earth
We will apply the Newton's second Law so the we will be able to find the acceleration.
F (tot) = ma
a = F(tot) / m
a = 32.0 N / 65.0 kg = 0.492 m/s^2
Approximately 0.492 m/s^2 is her initial acceleration if she is initially stationary and wearing steel-bladed skates.
Answer: 0.72 grams
Explanation: Mass can be extracted from the formula of density. D=M/V where D is density and V is volume. Therefore:
18 g/cm^3 = M(25 cm^3) --> Divide by 18g/cm^3 by 25 cm^3 to isolate mass. --> <u>0.72 =M </u> --> Now, to find out which unit you need to use for mass, just look at the density. You can see it is in g/cm^3, and cm^3 was already used for the volume. Thus, gram units are left, so that will be the unit needed, making the final answer 0.72 grams. Hope this helps :)
Answer:
An example of a weak base is ammonia. It does not contain hydroxide ions, but it reacts with water to produce ammonium ions and hydroxide ions. The position of equilibrium varies from base to base when a weak base reacts with water. The further to the left it is, the weaker the base.
Explanation:
I hope this helps!!