Answer: perpendicular to it oscillations.
Explanation: A transverse wave is a wave whose oscillations is perpendicular to the direction of the wave.
By perpendicular, we mean that the wave is oscillating on the vertical axis (y) of a Cartesian plane and the vibration is along the horizontal axis (x) of the plane.
Examples of transverse waves includes wave in a string, water wave and light.
Let us take a wave in a string for example, you tie one end of a string to a fixed point and the other end is free with you holding it.
If you move the rope vertically ( that's up and down) you will notice a kind of wave traveling away from you ( horizontally) to the fixed point.
Since the oscillations is perpendicular to the direction of wave, it is a transverse wave
Answer:
0.266 m
Explanation:
Assuming the lump of patty is 3 Kg then applying the principal of conservation of linear momentum,
P= mv where p is momentum, m is mass and v is the speed of an object. In this case
where sunscripts p and b represent putty and block respectively, c is common velocity.
Substituting the given values then
3*8=v(15+3)
V=24/18=1.33 m/s
The resultant kinetic energy is transferred to spring hence we apply the law of conservation of energy
where k is spring constant and x is the compression of spring. Substituting the given values then

Answer:
factual evidence of customer-service levels.
better understanding of cross-functional performance.
enhanced alignment of operations with strategy.
evidence-based determination of process improvement priorities.
detection of performance trends.
better understanding of the capability range of a process.
A) 
The energy of an x-ray photon used for single dental x-rays is

The energy of a photon is related to its wavelength by the equation

where
is the Planck constant
is the speed of light
is the wavelength
Re-arranging the equation for the wavelength, we find

B) 
The energy of an x-ray photon used in microtomography is 2.5 times greater than the energy of the photon used in part A), so its energy is

And so, by using the same formula we used in part A), we can calculate the corresponding wavelength:
