Answer:
Volume of original toolbox = 180 in³
Yes, doubling one dimension only would double the volume of the toolbox.
Step-by-step explanation:
Volume = L x W x H
10 x 6 x 3 = 180 in³
proof:
double length = 20 x 6 x 3 = 360 in³, which is double the original
double width = 10 x 12 x 3 = 360 in³, which is double the original
double height = 10 x 6 x 6 = 360 in³, which is double the original
Answer:
Mizuki is here to help! The answer is 8!
Step-by-step explanation:
5 + 30 ÷ 10 =
5 + 3 =
8
Remember PEMDAS!
Answer:
Mean: 9
Median: 9
Mode: 9
Variance: 9
Standard deviation: 9
Step-by-step explanation:
Answer:
960
Step-by-step explanation:
9600/10∧1=960
Answer:
Step-by-step explanation:
A system of linear equations is one which may be written in the form
a11x1 + a12x2 + · · · + a1nxn = b1 (1)
a21x1 + a22x2 + · · · + a2nxn = b2 (2)
.
am1x1 + am2x2 + · · · + amnxn = bm (m)
Here, all of the coefficients aij and all of the right hand sides bi are assumed to be known constants. All of the
xi
’s are assumed to be unknowns, that we are to solve for. Note that every left hand side is a sum of terms of
the form constant × x
Solving Linear Systems of Equations
We now introduce, by way of several examples, the systematic procedure for solving systems of linear
equations.
Here is a system of three equations in three unknowns.
x1+ x2 + x3 = 4 (1)
x1+ 2x2 + 3x3 = 9 (2)
2x1+ 3x2 + x3 = 7 (3)
We can reduce the system down to two equations in two unknowns by using the first equation to solve for x1
in terms of x2 and x3
x1 = 4 − x2 − x3 (1’)
1
and substituting this solution into the remaining two equations
(2) (4 − x2 − x3) + 2x2+3x3 = 9 =⇒ x2+2x3 = 5
(3) 2(4 − x2 − x3) + 3x2+ x3 = 7 =⇒ x2− x3 = −1