Answer:
The parcial pressure of N₂ in the mixture is 1.24 atm.
Explanation:
The pressure exerted by a particular gas in a mixture is known as its partial pressure. So, Dalton's law states that the total pressure of a gas mixture is equal to the sum of the pressures that each gas would exert if it were alone:
PT = PA + PB
This relationship is due to the assumption that there are no attractive forces between the gases.
In this case:
PT=PHe + PNe + PN₂
You know:
- PT= 1.943 atm
- PHe= 0.137 atm
- PNe= 0.566 atm
- PN₂= ?
Replacing:
1.943 atm= 0.137 atm + 0.566 atm + PN₂
Solving:
1.943 atm= 0.703 atm + PN₂
1.943 atm - 0.703 atm= PN₂
1.24 atm= PN₂
<u><em>The parcial pressure of N₂ in the mixture is 1.24 atm.</em></u>
First we calculate the number
of moles of Cl2, that is:
moles Cl2 = 1.5*10^10
grams/71 grams/mol = 211267605.633802817 mol = 2.1 * 10 ^ 8 mole = x <span>
So that based on stoichiometry, the number of moles of NaOH =
2x and that of H2 = x mol
mass of NaOH = 4.2*10^8 * 40 =168*10^8 grams = 1.68 * 10^6 kg
= 1.68 metric tons
<span>mass of H2 = 2.1*10^8 * 2 = 4.2*10^8 grams = 0.042 * 10^6 kg
= 0.042 metric tons.</span></span>
Answer:
1) n-Hexane. 2) 2-Methyl pentane(IUPAC name) or Isohexane(common name). 3) 2,2-Dimethylbutane(IUPAC name) or Neohexane(common name). 4) 3-Methylpentane
Explanation:
You should use Avogadro’s number for the conversion, because Avogadro’s Law states that there are 6.02 x 10^23 atoms per 1 mol of that substance.
Explanation:
1)observation is that the light doesn't reach some parts of the points of interest
2)this is because the rays of the light were interrupted by different objects thus making the light divert different ways.