Answer:
C20 H14 O2
Explanation:
Remark
This is a sample, which the question does not say and should. It is a fraction of 1 mole. So what you have to do is multiply the numbers given by x and equate it to 286.28
Equation
150,86* x + 8.86*x + 20.1*x = 286.28
179.8x = 286.28
x = 286.26/179.8
x = 1.592
Now multiply the given numbers by 1.592
150.86 * 1.592 = 240.58
8.85 * 1.592 = 14.1
20.1 * 1.592 = 32
Rounding you get
240/12 = 20
14.1/1 = 14
32/16 = 2
C20 H14 O2
Because H2O has 2 H and 1O and 1 H is already in the equation, the answer should contain 1H and 1O, meaning it's either H O- or OH- however the proper way to write it is OH
An easy was to remember is by writing H2O down as HOH and when you split it up it becomes H+ + OH-
2,3,7,10,13 i did this yesterday can u mark me brainliest
The right answer for the question that is being asked and shown above is that: "(2) the cathode in a voltaic cell and the anode in an electrolytic cell." At the status of electrode does oxidation occur in a voltaic cell and in an electrolytic cell is that the cathode in a voltaic cell and the anode in <span>an electrolytic cell</span>
The higher the energy density of a fuel, the greater the amount of energy it has stored.
<h3>What is the energy density?</h3>
The energy density of a fuel is defined as the amount of energy it possesses per unit volume or per unit weight.
<h3>Characteristics of the energy density</h3>
- It is the amount of energy accumulated in an energy vector per unit volume or mass.
- In general, higher density energy sources and carriers are preferable, as many end uses require concentration of such energy.
- The packaging of energy in liquid hydrocarbons is the one with the highest energy density, that is, the highest energy per volume unit, hence its high use in the transportation sector.
Therefore, we can conclude that in general, fuels, especially low molecular weight fuels, have high energy densities.
Learn more about the energy density here: brainly.com/question/2165966