Answer:
2.12 moles of gas were added.
Explanation:
We can solve this problem by using<em> Avogadro's law</em>, which states that at constant temperature and pressure:
Where in this case:
We <u>input the data</u>:
- 6.13 L * n₂ = 11.3 L * 2.51 mol
As <em>4.63 moles is the final number of moles</em>, the number of moles added is:
Atomic mass number is the number of protons and neutrons. Subtract 80-35=45 is the number of protons. Because the atom is neutrally charged, the number of protons must equal the number of electrons, so there are 45 electrons.
Answer:
a) T
b) T
c) F
d) F
e) T
f) T
g) T
h) F
I) F
j) F
k) F
l) F
Explanation:
The w/v concentration is obtained from, mass/volume. Hence;
%w/v= 50/1000= 5%
In the %w/w we have;
25g/100 g = 25% w/w
In combustion reaction, energy is given out hence it is exothermic.
Neutralization reaction yields a salt and water
% by mass of carbon is obtained from;
8× 12/114 × 100 = 84.1%
All the ionic substances mentioned have very low solubility in water.
One mole of a substance contains the Avogadro's number of each atom in the compound.
There are two iron atoms so one mole contains 2× 55.85 g of iron.
Some sulphates such as BaSO4 are insoluble in water.
Halides are soluble in water hence NaI is soluble in water.
The equation does not balance with the given coefficients because the number of atoms of each element on both sides differ.
The equation represents a decomposition of calcium carbonate as written.
Answer:9.49g/mL
Explanation:
Mass of toy = 43.672g
Volume of water = 34.4mL
Volume of toy + volume of water = 39mL
Volume of toy = 39 — 34.4 = 4.6mL
Density = Mass /volume
Density = 43.672/4.6 = 9.49g/mL