Use the concentration and rate data presented in the table below to answer the following questions about the hypothetical reaction:
A + 2B + 4C→ 2D + E
<span><span>Line[A] (mol/L)[B] (mol/L)[C] (mol/L)Rate (mol/L.s)</span><span>10.1000.1000.1003.6 x 10-2</span><span>20.2000.1000.1003.6 x 10-2</span><span>30.1000.2000.1007.2 x 10-2</span><span>40.2000.2000.2002.9 x 10-1</span><span>50.3000.2000.300?</span></span><span>Why would you expect this reaction to be a multi-step reaction, based on the overall reaction?What is the order of the reaction, with respect to each reactant?What is the overall order of the reaction?Write the rate law equation.How does the rate law equation confirm that this is a multi-step reaction?Predict the rate indicated by the “?”Propose a reaction mechanism using the criteria presented in the lesson, with the third step as the rate-determining step.<span>Draw a potential energy diagram to illustrate this reaction mechanism, assuming that the overall reaction is endothermic. Label reaction intermediates with the “RI”, and activated complexes with “AC”</span></span>
Answer:
Complex System
Explanation:
Given that, a descriptive scientific investigation is one of the three main types of investigation which formulates and quantify the natural phenomenon. This natural phenomenon oftentimes involves Complex System, such as microscopic organisms, thereby, scientists often make observations to understand the interacting parts of this COMPLEX SYSTEM
Hence, the right answer is a COMPLEX SYSTEM
1mol aluminium chloride gives 1mol aluminium and 3mol chloride
density equals mass divided by volume
d=m/v
m=v*d
=78.3*2.7
=211.41grams
Answer:
Our energy supply comes mainly from fossil fuels, with nuclear power and renewable sources rounding out the mix.
The energy associated with an object's motion is called kinetic energy. Kinetic energy is the energy of motion. All moving objects have kinetic energy
Explanation:
Answer:
ΔS> 0 means Letter A
Explanation:
Processes that involve an increase in entropy of the system (ΔS > 0) are very often spontaneous; however, examples to the contrary are plentiful. By expanding consideration of entropy changes to include the surroundings, we may reach a significant conclusion regarding the relation between this property and spontaneity. In thermodynamic models, the system and surroundings comprise everything, that is, the universe, and so the following is true:
\displaystyle \Delta {S}_{\text{univ}}=\Delta {S}_{\text{sys}}+\Delta {S}_{\text{surr}}