Answer:
Step-by-step explanation:
Given the expression (x+11)(2x+3)
We want to expand it and write equivalent expression
Generally if we want to expand an expression we will take one of the expression in one bracket and multiply with the other bracket and then take the other expression and multiply it with the other
E.g, (a+b) × (c + d)
Then, we take a × (c+d) and also b × (c+d)
We can do it the other way round too and it will give the same results.
So, applying this to the given expression
(x+11)(2x+3)
x(2x+3) + 11(2x+3)
2x² + 3x + 22x + 33
2x² + 25x + 33
Then, the equivalent expression is 2x² + 25x + 33
(x + 11)(2x + 3) = 2x² + 25x + 33
Answer:
7x-4 = -28
4y+8 = 4(y + 2)
Step-by-step explanation:
Answer:
v = 1/(1+i)
PV(T) = x(v + v^2 + ... + v^n) = x(1 - v^n)/i = 493
PV(G) = 3x[v + v^2 + ... + v^(2n)] = 3x[1 - v^(2n)]/i = 2748
PV(G)/PV(T) = 2748/493
{3x[1 - v^(2n)]/i}/{x(1 - v^n)/i} = 2748/493
3[1-v^(2n)]/(1-v^n) = 2748/493
Since v^(2n) = (v^n)^2 then 1 - v^(2n) = (1 - v^n)(1 + v^n)
3(1 + v^n) = 2748/493
1 + v^n = 2748/1479
v^n = 1269/1479 ~ 0.858
Step-by-step explanation:
THIS IS THE COMPLETE QUESTION BELOW
The demand equation for a product is p=90000/400+3x where p is the price (in dollars) and x is the number of units (in thousands). Find the average price p on the interval 40 ≤ x ≤ 50.
Answer
$168.27
Step by step Explanation
Given p=90000/400+3x
With the limits of 40 to 50
Then we need the integral in the form below to find the average price
1/(g-d)∫ⁿₐf(x)dx
Where n= 40 and a= 50, then if we substitute p and the limits then we integrate
1/(50-40)∫⁵⁰₄₀(90000/400+3x)
1/10∫⁵⁰₄₀(90000/400+3x)
If we perform some factorization we have
90000/(10)(3)∫3dx/(400+3x)
3000[ln400+3x]₄₀⁵⁰
Then let substitute the upper and lower limits we have
3000[ln400+3(50)]-ln[400+3(40]
30000[ln550-ln520]
3000[6.3099×6.254]
3000[0.056]
=168.27
the average price p on the interval 40 ≤ x ≤ 50 is
=$168.27