1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garik1379 [7]
3 years ago
15

Find an example for each of vectors x, y ∈ V in R.

Mathematics
1 answer:
rjkz [21]3 years ago
8 0

(a) Both conditions are satisfied with <em>x</em> = (1, 0) for \mathbb R^2 and <em>x</em> = (1, 0, 0) for \mathbb R^3:

||(1, 0)|| = √(1² + 0²) = 1

max{1, 0} = 1

||(1, 0, 0)|| = √(1² + 0² + 0²) = 1

max{1, 0, 0} = 1

(b) This is the well-known triangle inequality. Equality holds if one of <em>x</em> or <em>y</em> is the zero vector, or if <em>x</em> = <em>y</em>. For example, in \mathbb R^2, take <em>x</em> = (0, 0) and <em>y</em> = (1, 1). Then

||<em>x</em> + <em>y</em>|| = ||(0, 0) + (1, 1)|| = ||(1, 1)|| = √(1² + 1²) = √2

||<em>x</em>|| + ||<em>y</em>|| = ||(0, 0)|| + ||(1, 1)|| = √(0² + 0²) + √(1² + 1²) = √2

The left side is strictly smaller if both vectors are non-zero and not equal. For example, if <em>x</em> = (1, 0) and <em>y</em> = (0, 1), then

||<em>x</em> + <em>y</em>|| = ||(1, 0) + (0, 1)|| = ||(1, 1)|| = √(1² + 1²) = √2

||<em>x</em>|| + ||<em>y</em>|| = ||(1, 0)|| + ||(0, 1)|| = √(1² + 0²) + √(0² + 1²) = 2

and of course √2 < 2.

Similarly, in \mathbb R^3 you can use <em>x</em> = (0, 0, 0) and <em>y</em> = (1, 1, 1) for the equality, and <em>x</em> = (1, 0, 0) and <em>y</em> = (0, 1, 0) for the inequality.

(c) Recall the dot product identity,

<em>x</em> • <em>y</em> = ||<em>x</em>|| ||<em>y</em>|| cos(<em>θ</em>),

where <em>θ</em> is the angle between the vectors <em>x</em> and <em>y</em>. Both sides are scalar, so taking the norm gives

||<em>x</em> • <em>y</em>|| = ||(||<em>x</em>|| ||<em>y</em>|| cos(<em>θ</em>)|| = ||<em>x</em>|| ||<em>y</em>|| |cos(<em>θ</em>)|

Suppose <em>x</em> = (0, 0) and <em>y</em> = (1, 1). Then

||<em>x</em> • <em>y</em>|| = |(0, 0) • (1, 1)| = 0

||<em>x</em>|| • ||<em>y</em>|| = ||(0, 0)|| • ||(1, 1)|| = 0 • √2 = 0

For the inequality, recall that cos(<em>θ</em>) is bounded between -1 and 1, so 0 ≤ |cos(<em>θ</em>)| ≤ 1, with |cos(<em>θ</em>)| = 0 if <em>x</em> and <em>y</em> are perpendicular to one another, and |cos(<em>θ</em>)| = 1 if <em>x</em> and <em>y</em> are (anti-)parallel. You get everything in between for any acute angle <em>θ</em>. So take <em>x</em> = (1, 0) and <em>y</em> = (1, 1). Then

||<em>x</em> • <em>y</em>|| = |(1, 0) • (1, 1)| = |1| = 1

||<em>x</em>|| • ||<em>y</em>|| = ||(1, 0)|| • ||(1, 1)|| = 1 • √2 = √2

In \mathbb R^3, you can use the vectors <em>x</em> = (1, 0, 0) and <em>y</em> = (1, 1, 1).

You might be interested in
Here is a tree diagram showing the sample space for two independent events. How many outcomes are there for the second event?
kobusy [5.1K]

Answer:

probably 8 just remember

________________________________________________________

sick of crying  

tired of trying

yes i'm smiling

but inside i'm  

       dying

Step-by-step explanation:

8 0
2 years ago
The volume of a square prism is 144x^3 +216x^2 +81x
Svetach [21]

Answer:

Equation for the perimeter of prism's square face: 16x + 12

Step-by-step explanation:

Volume of Square prism = Length * Width * Height

                                         = 144 x^3 + 216 x^2 +81 x

taking 9x common = 9x( 16 x^2 + 24 x + 9)

                               = 9x ( (4x)^2 + 2(4x)(3) + (3)^2 )

                                = 9x ( 4x+3)^2

so the length is 9x, width is 4x+3 and height is 4x+3

Now, Perimeter of prism's square face = 2* Width + 2 * Height

                                                                = 2* (4x+3) + 2* (4x+3)

                                                                = 8x +6 + 8x + 6

                                                                = 16x +12

                   

6 0
3 years ago
Math each equation to its graph. Use the drop down menu to describe the equations.
ser-zykov [4K]
1. D linear
2. A quadratic
3. B exponential
4. C rational
6 0
3 years ago
A number is greater than 8 The same number of possible solutions to the inequality
Gre4nikov [31]

Answer:

48

Step-by-step explanation:

5 0
2 years ago
Read 2 more answers
These Questions is worth 20 Points. No Explanation Required.
avanturin [10]

13. five plus <em>y</em> equal to negative two. y = -7

14. eight plus <em>h</em> equal to twelve. h = 4

15. negative thirteen plus four equal <em>n</em>. n = -9

7 0
3 years ago
Other questions:
  • At a dance camp, students must specialize in one style of dance. Of the 62 dancers at the
    15·1 answer
  • Which of these is an equation? 8t+4=76 8t+4 8z 8+4
    5·1 answer
  • A gambler is deciding whether or not to take a bet. She must pay $40 to take the bet, but if she wins, she will profit $225. The
    10·1 answer
  • During Devin’s foot ball season with the devil dogs, he played 21 games. In each game, he ran 125 yards. How many total yards di
    8·1 answer
  • Write the following inequality in slope-intercept form. 5x-5y≥70
    13·1 answer
  • Can someone answer this question please answer it correctly if it’s corect I will mark you brainliest
    7·2 answers
  • A train traveled 325 miles in 5 hours. What was the trains average rate of speed in miles per hour?
    5·1 answer
  • 9.6 + [(3.1 x 2) - 2.3] + 4 to the 2nd power
    11·1 answer
  • 18 × [ 7+(-3) ] = [ 18 x 7] + [ 18 × (-3) ]​
    11·2 answers
  • Write an expression for y more than 2
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!