One thing that does not change is the chemical composition of water, which is still H2O. And maybe mass, if all of the particles remain inside the beaker, which was never mentioned in the question so I am not sure.
Answer:
The 20th century saw huge advances in our understanding and use of the nucleus. For instance, in 1939 scientists Otto Hahn, Lise Meitner and Otto Frisch discovered nuclear fission – a process by which radioactive materials release energy when they are induced to split.
Realising the huge amount of energy that such a reaction produces, scientists were tasked with developing this new knowledge initially for harm in nuclear weapons. Just six years after fission’s discovery, it was harnessed in the atom bombs that destroyed the Japanese cities Hiroshima and Nagasaki, and controversially ended the Second World War. Later, much more powerful hydrogen bombs were developed that combined fission with the process powering the Sun – fusion.
Hope this helps! PLEASE GIVE ME BRAINLIEST!!!!! =)
Answer:
attached below
Explanation:
Structure of two acyclic compounds with 3 or more carbons that exhibits one singlet in 1H-NMR spectrum
a) Acetone CH₃COCH₃
Attached below is the structure
b) But-2-yne (CH₃C)₂
Attached below is the structure
Answer:
The volume of the balloon will be 5.11L
Explanation:
An excersise to solve with the Ideal Gases Law
First of all, let's convert the pressure in mmHg to atm
1 atm = 760 mmHg
760 mmHg ___ 1 atm
755.4 mmHg ____ (755.4 / 760) = 0.993 atm
922.3 mmHg ____ ( 922.3 / 760) = 1.214 atm
T° in K = 273 + °C
28.5 °C +273 = 301.5K
26.35°C + 273= 299.35K
P . V = n . R .T
First situation: 0.993atm . 6.25L = n . 0.082 . 301.5K
(0.993atm . 6.25L) / 0.082 . 301.5 = n
0.251 moles = n
Second situation:
1.214 atm . V = 0.251 moles . 0.082 . 301.5K
V = (0.251 moles . 0.082 . 301.5K) / 1.214 atm
V = 5.11L