The question is incomplete, the complete question is shown in the image attached
Answer:
A and B
Explanation:
The electrophilic substitution of arenes yields a cation intermediate. The positive charge of the cation is delocalized over the entire ring.
The -CN group directs incoming electrophiles to the ortho/para position. The resonance structures for the chlorination of benzonitrile are shown in the question.
Recall that -CN is an electron withdrawing group. The resonance forms that destablize the carbocation intermediate are those in which the -CN group is directly attached to the carbon atom bearing the positive charge as in structures A and B.
Answer:
¿Las partículas de hielo tienen una alta fuerza de atracción entre partículas? Justifica tu respuesta
Explanation:
Dichos contenidos están presentes en los currículos de Física y Química de la educación básica, con independencia del marco legal, pues introducen al alumno en el conocimiento químico de la materia. Aunque la teoría cinética molecular obvia la composición atómica de las partículas, no deja de ser un contenido deseable para introducir a los alumnos en el mundo de la química pues permite diferenciar y establecer relaciones entre los niveles macro, micro y simbólico de la materia.
Explanation:
I have a dog in my dog is a girl
What items are you separating? Please be more specific with your answer!
Answer:
625.46 °C
Explanation:
We'll begin by converting 19 °C to Kelvin temperature. This can be obtained as follow:
T(K) = T(°C) + 273
T(°C) = 19 °C
T(K) = 19 °C + 273
T(K) = 292 K
Next, we shall determine the Final temperature. This can be obtained as follow:
Initial volume (V₁) = 3.25 L
Initial temperature (T₁) = 292 K
Final volume (V₂) = 10 L
Final temperature (T₂) =?
V₁/T₁ = V₂/T₂
3.25 / 292 = 10 / T₂
Cross multiply
3.25 × T₂ = 292 × 10
3.25 × T₂ = 2920
Divide both side by 3.25
T₂ = 2920 / 3.25
T₂ = 898.46 K
Finally, we shall convert 898.46 K to celsius temperature. This can be obtained as follow:
T(°C) = T(K) – 273
T(K) = 898.46 K
T(°C) = 898.46 – 273
T(°C) = 625.46 °C
Therefore the final temperature of the gas is 625.46 °C