Check the pictures below.
if we knew the roots/solutions of the equation, we can set h(s) = 0 and solve for "s" to find out how many seconds is it when the height is 0.
if you notice in the first picture, when f(x) = 0, is when the parabola hits a root/solution or the ground, for David he'll be hitting the water surface, and the equation that has both of those roots/solutions conspicuous is
h(s) = -4.9(s - 2)(s + 1).
Answer:
$6.75 I THINK
Step-by-step explanation:
I struggled to figure this out and I'm pretty sure its $6.75 but im not sure :(
The formula for depreciation is:

Where x = Initial value,
y= Amount after depreciation.
r= Rate of depreciation,
t = time (in years)
According to given problem,
x = 1040, y= 944 and t = 12 months =1 year.
So, first step is to plug in these values in the above formula, So,

944 = 1040 (1 -r)
Divide each sides by 1040.
0.907692308 =1 - r
0.907692308 - 1 = -r Subtract 1 from each sides.
-0.092307692 = -r
So, r = 0.09 or 9%.
Now plug in 0.09 in the above equation to get the depreciation equation. So,

So, 
b) To find the value of the bike after 5 months,
plug in t = 5 months= 5/12 = 0.41667 years in the above equation of depreciation.
So, 
y = 1040 * 0.961465659
y = 999.9242852
y = 1000 (Rounded to nearest integer).
Hence, the value of the bike after 5 months is $1000.
Answer: 25 + 3n
Step-by-step explanation:
Hi, the answer is lacking the last part:
<em>Write an expression for the amount of money he makes this week.
</em>
So, to answer this we have to write an expression:
The fixed amount that he earns per week (25) plus the product of the amount he earns per subscription (3) and the number of subscriptions sold (n) , must be equal to his weekly earnings.
Mathematically speaking:
25 + 3n
Feel free to ask for more if needed or if you did not understand something.