Answer: MR²
is the the moment of inertia of a hoop of radius R and mass M with respect to an axis perpendicular to the hoop and passing through its center
Explanation:
Since in the hoop , all mass elements are situated at the same distance from the centre , the following expression for the moment of inertia can be written as follows.
I = ∫ r² dm
= R²∫ dm
MR²
where M is total mass and R is radius of the hoop .
Answer:
The maximum value of the induced magnetic field is
.
Explanation:
Given that,
Radius of plate = 30 mm
Separation = 5.0 mm
Frequency = 60 Hz
Suppose the maximum potential difference is 100 V and r= 130 mm.
We need to calculate the angular frequency
Using formula of angular frequency

Put the value into the formula


When r>R, the magnetic field is inversely proportional to the r.
We need to calculate the maximum value of the induced magnetic field that occurs at r = R
Using formula of magnetic filed

Where, R = radius of plate
d = plate separation
V = voltage
Put the value into the formula


Hence, The maximum value of the induced magnetic field is
.
The highest point<span> of the </span>pendulums<span> swing is when the potential energy is at its </span>highest<span> and the </span>kinetic energy<span> is at its lowest.</span>
The conservation of energy always holds true even when not clearly observable in machines that are less than 100% efficient. More often than not a machine will suffer energy losses (e.g. consider for a cooling fan: friction between the rotating blades, drag resistance in the air the fan is pushing around, resistance in the wire, and heat radiating/conducting away from the circuitry).