Answer:
0.0757 kg
Explanation:
m = mass of the body = 95 kg = 95000 g
ΔT = change in the temperature of the body = 0.45 °C
c = specific heat capacity of the body = 4.0 J/(g °C)
M = mass of water evaporated
L = latent heat of vaporization of water = 2260 J/g
Using conservation of heat
Heat gained by water = heat lost by body
ML = m c ΔT
M (2260) = (95000) (4.0) (0.45)
M = 75.7 g
M = 0.0757 kg
Answer:
2361 Newtons
Explanation:
From the second Newton's law of motion;
F = ma
In this case;
we are given;
Mass as 9.5 g
Initial speed as 0 m/s
Final velocity as 650 m/s
Distance is 0.85 m
Using the equation;
V² = U² + 2as
But u = 0
v² = 2as
Therefore;
a = v² ÷ 2s
= 650² ÷ 2(0.85)
= 248,529.40 m/s²
But;
F = ma
= 0.0095 kg × 248,529.40 m/s²
= 2361 Newtons
Therefore;
The average net force required to accelerate the bullet is 2361 Newtons.
Sound travels fastest through matter in the <em>solid state</em>.
I know this from having answered a huge number of Brainly questions that required me to look up things like this:
-- Speed of sound in air . . . about 340 m/s
-- Speed of sound in sea-water . . . about 1,500 m/s
-- Speed of sound in steel . . . about 5,960 m/s
Answer:
I’m pretty positive that it’s 3 seconds
Hope this helps!
The wavelength of a photon of electromagnetic radiation with a frequency of 151.7 Mhz is 1.978 meter
According to the question
The frequency of a photon of electromagnetic radiation = 151.7 Mhz
By using the Formula of wavelength and frequency
λ = C/f
Where,
λ (Lambda) = Wavelength in meters
C = Speed of Light (c = 3x10⁸ m/s)
f = Frequency
Now, the wavelength of a photon of electromagnetic radiation with a frequency of 151.7 Mhz is
1 Mhz = 1000000 Hz
151.7 Mhz = 151.7 * 10⁶ Hz
λ = C/f
Substituting the value of C and f
λ =
λ = 1.978 meter
Hence, the wavelength of a photon of electromagnetic radiation with a frequency of 151.7 Mhz is 1.978 meter
To know more about wavelength and frequency here:
brainly.com/question/18651058
#SPJ4