Answer:
Explanation:
Let the thickness of the film is t and the refractive index of the material of film is n.
When light travels through a sheet of thickness t, the optical path traveled is nt.
When the path of one of slit is covered by a sheet of thickness t, the optical path becomes
x = ( n - 1) t
As the one fringe is shift, so the optical path changed by one wavelength.
i.e., x = λ
So, λ = ( n - 1) t

Answer:
The x-component of the electric field at the origin = -11.74 N/C.
The y-component of the electric field at the origin = 97.41 N/C.
Explanation:
<u>Given:</u>
- Charge on first charged particle,

- Charge on the second charged particle,

- Position of the first charge =

- Position of the second charge =

The electric field at a point due to a charge
at a point
distance away is given by

where,
= Coulomb's constant, having value 
= position vector of the point where the electric field is to be found with respect to the position of the charge
.
= unit vector along
.
The electric field at the origin due to first charge is given by

is the position vector of the origin with respect to the position of the first charge.
Assuming,
are the units vectors along x and y axes respectively.

Using these values,

The electric field at the origin due to the second charge is given by

is the position vector of the origin with respect to the position of the second charge.

Using these values,

The net electric field at the origin due to both the charges is given by

Thus,
x-component of the electric field at the origin = -11.74 N/C.
y-component of the electric field at the origin = 97.41 N/C.
Answer:
1470kgm/s
Explanation:
Given parameters:
Mass of the rock = 50kg
Time taken for the free fall = 3s
Unknown:
Change in momentum = ?
Solution:
The change in momentum will be difference between the ending momentum and finishing momentum.
Momentum is the product of mass and velocity
Momentum = mass x velocity
Initial momentum = 0, the velocity is 0
Final momentum = mass x final velocity
let us find the final velocity;
V = U + gt
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity = 9.8m/s²
t is the time
V = 0 + 9.8x3 = 29.4m/s
So;
Change in momentum = 50 x 29,4 = 1470kgm/s
The bus is going forward and suddenly stops
Additionally, the coefficient of thermal expansion of the restorative material should be comparable to the coefficient of thermal expansion of the tooth structure, since a significant difference between the two could result in thermal-induced stress at the cavity wall and subsequent marginal failure.
This study's objective was to assess how thermal stress affected the marginal integrity of restorative materials with various adhesive and thermal characteristics. As an alternative to clinical trials, which are expensive and time-consuming, evaluation of restorative materials under laboratory simulations of clinical function is frequently carried out. Thermal cycling regimens, which are in vitro techniques that subject the restoration and the tooth to extremely high temperatures, are frequently used in laboratory simulations to replicate thermal stresses that naturally occur in vivo.
Learn more about Thermal Stress here-
brainly.com/question/20309377
#SPJ4