The concept required to solve this problem is linked to inductance. This can be defined as the product between the permeability in free space by the number of turns squared by the area over the length. Recall that Inductance is defined as the opposition of a conductive element to changes in the current flowing through it. Mathematically it can be described as
Here,
= Permeability at free space
N = Number of loops
A = Cross-sectional Area
l = Length
Replacing with our values we have,
Therefore the Inductance is
Answer:
Hypothesis
Explanation:
Refer to a trial solution to a problem as a hypothesis, often called an "educated guess" because it provides a suggested outcome based on the evidence.
Answer:
I don't know sorry For this question
C. Thick wire and cold temperature.
Explanation:
The resistance of a wire is given by: R = (ρL)/A
where ρ is the resistivity of the material, L is the length of the wire, A is the cross-sectional area of the wire.
From the formula, we see that the thicker the wire, the larger A, therefore the smaller the resistivity. so, a thick wire will have lower resistivity.
Moreover, the resistance of a wire increases with the temperature. In fact, high temperatures mean more motion of the atoms/electrons inside the wire, so more resistance to the flow of current through it. Therefore, colder temperature means lower resistance.
So, the correct option is thick wire and cold temperature.
Answer:
The dynamo produces Alternating Current output, so in theory yes, it should work in reverse if Alternating Current is input.