The acceleration due to gravity serves as the centripetal acceleration of the objects that orbits the Earth. The centripetal acceleration due to gravity is calculated through the equation,
a = v²/r
where v is the speed and r is the radius. Substituting the known values to the equation,
9.8 m/s² = (420 m/s)² / r
The value of r from the equation is 18000 m or equal to 18 km.
<em>Answer: 18 km</em>
Answer: So, I looked at it to see what was the correct one, and the correct answer is Cool air near surface forms high-pressure areas, warm air forms low pressure areas. I hope this helps :D :)
Explanation:
Answer:
Failure rate = 20%
MTBF = 880 hours
Explanation:
given data
batteries = 10
tested = 200 hours
one failed = 20 hours
another fail at = 140 hours
solution
we know that Mean Time between Failures is express as = (Total up time) ÷ (number of breakdowns) ....................1
so here Total up time will be
Total up time = 200 × 10
Total up time = 2000
and here
Number of breakdown = 1 at 20 hour and another at 140 hour = 2
so it will be = (Total up time) ÷ (number of breakdowns) .......2
=
= 1000
so here gap between occurrences is
gap between occurrences= 140 - 20
gap between occurrences = 120 hour
and
MTBF will be
MTBF = 1000 - 120
MTBF = 880 hours
and
Failure rate (FR) will be
Failure rate (FR) = 1 ÷ MTBF ................3
Failure rate (FR) = R÷T ......................4
as here R is the number of failures and T is total time
so Failure rate (FR) = 20%
Demographic Barriers, Occupation, Age, Obesity, <span>
Psychological Barriers</span>
Answer: 1175 J
Explanation:
Hooke's Law states that "the strain in a solid is proportional to the applied stress within the elastic limit of that solid."
Given
Spring constant, k = 102 N/m
Extension of the hose, x = 4.8 m
from the question, x(f) = 0 and x(i) = maximum elongation = 4.8 m
Work done =
W = 1/2 k [x(i)² - x(f)²]
Since x(f) = 0, then
W = 1/2 k x(i)²
W = 1/2 * 102 * 4.8²
W = 1/2 * 102 * 23.04
W = 1/2 * 2350.08
W = 1175.04
W = 1175 J
Therefore, the hose does a work of exactly 1175 J on the balloon