Answer:
I believe the answer is B.
Explanation:
Newton's First Law of Gravity states, "The greater the weight (or mass) of an object, the more inertia it has. Heavy objects are harder to move than light ones because they have more inertia.
"
Answer:
1.3 × 10⁸ e⁻
Explanation:
When a honeybee flies through the air, it develops a charge of +20 pC = + 20 × 10⁻¹² C. This is a consequence of losing electrons (negative charges). The charge of 1 mole of electrons is 96468 C (Faraday's constant). The moles of electrons representing 20 pC are:
20 × 10⁻¹² C × (1 mol e⁻/ 96468 C) = 2.1 × 10⁻¹⁶ mol e⁻
1 mole of electrons has 6.02 × 10²³ electrons (Avogadro's number). The electrons is 2.1 × 10⁻¹⁶ moles of electrons are:
2.1 × 10⁻¹⁶ mol e⁻ × (6.02 × 10²³ e⁻/ 1 mol e⁻) = 1.3 × 10⁸ e⁻
Answer:
Introducing a dielectric into a capacitor decreases the electric field, which decreases the voltage, which increases the capacitance.
Explanation:
A dielectric (or dielectric material) is an electrical insulator that can be polarized by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor but only slightly shift from their average equilibrium positions causing dielectric polarization
Types of dielectric material
Ceramic, Mica paper glass
V = 1/3 Bh v = 1/3 (13 ac)(43560ft^2/ac)(481ft) v = 90793560 ft^3 * 0.3048m/ft * 0.3048m/ft * 0.3048m/ft = 2570987m^3
Answer:
M
Explanation:
To apply the concept of <u>angular momentum conservation</u>, there should be no external torque before and after
As the <u>asteroid is travelling directly towards the center of the Earth</u>, after impact ,it <u>does not impose any torque on earth's rotation,</u> So angular momentum of earth is conserved
⇒
-
is the moment of interia of earth before impact -
is the angular velocity of earth about an axis passing through the center of earth before impact
is moment of interia of earth and asteroid system
is the angular velocity of earth and asteroid system about the same axis
let 
since 

⇒ if time period is to increase by 25%, which is
times, the angular velocity decreases 25% which is
times
therefore

(moment of inertia of solid sphere)
where M is mass of earth
R is radius of earth

(As given asteroid is very small compared to earth, we assume it be a particle compared to earth, therefore by parallel axis theorem we find its moment of inertia with respect to axis)
where
is mass of asteroid
⇒ 

=
+ 

⇒
