Answer:
There will be $5624.32 in the account after 3 years if the interest is compounded annually.
There will be $5630.812 in the account after 3 years if the interest is compounded semi-annually.
There will be $5634.125 in the account after 3 years if the interest is compounded quarterly.
There will be $5636.359 in the account after 3 years if the interest is compounded monthly
Step-by-step explanation:
Tamira invests $5,000 in an account
Rate of interest = 4%
Time = 3 years
Case 1:
Principal = 5000
Rate of interest = 4%
Time = 3 years
No. of compounds per year = 1
Formula :

A=5624.32
There will be $5624.32 in the account after 3 years if the interest is compounded annually.
Case 2:
Principal = 5000
Rate of interest = 4%
Time = 3 years
No. of compounds per year = 2
Formula : 

A=5630.812
There will be $5630.812 in the account after 3 years if the interest is compounded semi-annually.
Case 3:
Principal = 5000
Rate of interest = 4%
Time = 3 years
No. of compounds per year = 4
Formula : 

A=5634.125
There will be $5634.125 in the account after 3 years if the interest is compounded quarterly.
Case 4:
Principal = 5000
Rate of interest = 4%
Time = 3 years
No. of compounds per year = 4
Formula :

A=5636.359
There will be $5636.359 in the account after 3 years if the interest is compounded monthly
Answer: If we define 2:00pm as our 0 in time; then:
at t= 0. the velocity is 30 mi/h.
then at t = 10m (or 1/6 hours) the velocity is 50mi/h
Then, if we think in the "mean acceleration" as the slope between the two velocities, we can find the slope as:
a= (y2 - y1)/(x2 - x1) = (50 mi/h - 30 mi/h)/(1/6h - 0h) = 20*6mi/(h*h) = 120mi/
Now, this is the slope of the mean acceleration between t= 0h and t = 1/6h, then we can use the mean value theorem; who says that if F is a differentiable function on the interval (a,b), then exist at least one point c between a and b where F'(c) = (F(b) - F(a))/(b - a)
So if v is differentiable, then there is a time T between 0h and 1/6h where v(T) = 120mi/
The correct axis of symmetry is x = -1.
Explanation:
Our equation is

.
This is in vertex form, which is
y = a(x-h)² + k, where (h, k) is the vertex.
In our equation, h corresponds with -1 and k corresponds with -3, making the vertex (-1, -3).
The axis of symmetry is the x-coordinate of the vertex; this makes the axis of symmetry for this equation x = -1.
Answer:
Divide one of the sides in the bigger triangle by its corresponding side in the smaller triangle to determine the scale factor for the smaller triangle to the bigger triangle.