From the solution that I have done, the wavelength in the question that we have is 31.88 cm
<h3>How to solve for the wavelength</h3>
The frequency in the question is given as 40/30 = 1.33 hz
Next we have to solve for V
= 425/10
= 42.5 cm/s
v = frequency * wavelength
we have to put in the values in the formula. This would be
42.5 = 1.33 x wavelength
we have to divide through by 1.33 to get the wavelength. This would be
42.5/1.333 = wavelength
31.88 cm = wavelength
Hence we can say that the wavelength in the question that we have here is 31.88 cm
Read more on wavelength here:
brainly.com/question/10728818
#SPJ4
To answer that question, we don't care what the highest and lowest
levels of the wave are, or how far apart they are. We only need to be
able to identify the highest point on the wave, and keep track of how
often those pass by us.
You said it takes 4 seconds for a complete wave to pass by.
Through the sheer power of intellect, I'm able to take that information
and calculate that 1/4 of the wave passes by in 1 second.
There's your frequency . . . 1/4 per second, or 0.25 Hz.
1 kg ball can have more kinetic energy than a 100 kg ball as increase in velocity is having greater impact on K.E than increase in mass.
<u>Explanation</u>:
We know kinetic energy can be judged or calculated by two parameters only which is mass and velocity. As kinetic energy is directly proportional to the
and increase in velocity leads to greater effect on translational Kinetic Energy. Here formula of Kinetic Energy suggests that doubling the mass will double its K.E but doubling velocity will quadruple its velocity:

Better understood from numerical example as given:
If a man A having weight 50 kg run with speed 5 m/s and another man B having 100 kg weight run with 2.5 m / s. Which man will have more K.E?
This can be solved as follows:


It shows that man A will have more K.E.
Hence 1 kg ball can have more K.E than 100 kg ball by doubling velocity.
<h3>X-Rays contradict to?</h3>
<h3>C. gamma </h3>
a type of penetrating electromagnetic radiation produced by the radioactive disintegration of atomic nuclei
Answer:
Ice is the solid state of water, a normally liquid substance that freezes to the solid state at temperatures of 0 °C (32 °F) or lower and expands to the gaseous state at temperatures of 100 °C (212 °F) or higher.
Explanation: