Answer:
A. They have the same atomic numbers.
Explanation:
Elements are defined based on the atomic number, which is the number of protons in the nucleus: this means that atoms of the same element have always the same number of protons in their nuclei (and so, always the same atomic number).
The other choices are wrong because:
B. They have the same average atomic masses. --> this is false for isotopes, which are atoms of the same element having a different number of neutrons. Since the atomic mass is calculated from the sum of the masses of protons and neutrons in the nucleus, two isotopes of the same element have different atomic mass
C. They have the same number of electron shells. --> this can be false when an atom of an element loses/gains an electron, becoming an ion: in that case, the number of electron shells can change, since the number of electrons has changed.
D. They have the same number of electrons in their outermost shells. --> this is also false in case one of the atoms is an ion, since the number of electrons is different.
Answer:
1.621 kN
Explanation:
Since each horse pulls with a force of 839 N at an angle of 15° with the centerline of the canal, the horizontal component of the force due to the first horse along the canal is F= 839cos15° N and its vertical component is F' = 839sin15° N(it is positive since it is perpendicular to the centerline of the canal and points upwards).
The horizontal component of the force due to the second horse along the canal is f = 839cos15° N and its vertical component is f' = -839sin15° N (it is negative since it is perpendicular to the centerline of the canal and points downwards).
So, the resultant horizontal component of force R = F + f = 839cos15° N + 839cos15° N = 2(839cos15°) N = 2(839 × 0.9659) = 2 × 810.412 = 1620.82 N
So, the resultant vertical component of force R' = F' + f' = 839sin15° N + (-839sin15° N) = 839sin15° N - 839sin15° N = 0 N
The magnitude of the resultant force which is the sum of the two forces is R" = √(R² + R'²)
= √(R² + 0²) (since R' = 0)
= √R²
= R
= 1620.82 N
= 1.62082 kN
≅ 1.621 kN
So, the sum of these two forces on the barge is 1.621 kN
Answer:
change in entropy is 3.3034 ×
Explanation:
give data
thermal energy Q = 155 J
temperature T = 340 K
to find out
change in entropy
solution
we know change in entropy formula that is
change in entropy = Q / ( K×T ) ..............1
here K is boltzmann constant that is 1.38 ×
kg-m²/s²
put these value in equation 1 we get
change in entropy = Q / ( K × T )
change in entropy = 155 / ( 1.38 ×
× 340 )
change in entropy = 3.3034 ×
so change in entropy is 3.3034 ×
I’m not sure about the first one, but I know that in order for a substance to be in a plasma stage it must be hot, so I would say C) for the second question :)