1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ahat [919]
3 years ago
12

Consider the following theorem. Theorem If f is integrable on [a, b], then b a f(x) dx = lim n→[infinity] n i = 1 f(xi)Δx where

Δx = b − a n and xi = a + iΔx. Use the given theorem to evaluate the definite integral. 9 (x2 − 4x + 6) dx 1
Mathematics
1 answer:
mel-nik [20]3 years ago
3 0

Split up the interval [1, 9] into <em>n</em> subintervals of equal length (9 - 1)/<em>n</em> = 8/<em>n</em> :

[1, 1 + 8/<em>n</em>], [1 + 8/<em>n</em>, 1 + 16/<em>n</em>], [1 + 16/<em>n</em>, 1 + 24/<em>n</em>], …, [1 + 8 (<em>n</em> - 1)/<em>n</em>, 9]

It should be clear that the left endpoint of each subinterval make up an arithmetic sequence, so that the <em>i</em>-th subinterval has left endpoint

1 + 8/<em>n</em> (<em>i</em> - 1)

Then we approximate the definite integral by the sum of the areas of <em>n</em> rectangles with length 8/<em>n</em> and height f(x_i) :

\displaystyle \int_1^9 (x^2-4x+6) \,\mathrm dx \approx \sum_{i=1}^n \frac8n\left(\left(1+\frac8n(i-1)\right)^2-4\left(1+\frac8n(i-1)\right)+6\right)

Take the limit as <em>n</em> approaches infinity and the approximation becomes exact. So we have

\displaystyle \int_1^9 (x^2-4x+6) \,\mathrm dx = \lim_{n\to\infty} \sum_{i=1}^n \frac8n\left(\left(1+\frac8n(i-1)\right)^2-4\left(1+\frac8n(i-1)\right)+6\right) \\\\ = \lim_{n\to\infty} \frac8n \sum_{i=1}^n \left(1+\frac{16}n(i-1)+\frac{64}{n^2}(i-1)^2-4-\frac{32}n(i-1)+6\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \sum_{i=1}^n \left(64(i-1)^2-16n(i-1)+3n^2\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \sum_{i=0}^{n-1} \left(64i^2-16ni+3n^2\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \left(64\sum_{i=0}^{n-1}i^2 - 16n\sum_{i=0}^{n-1}i + 3n^2\sum{i=0}^{n-1}1\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \left(\frac{64(2n-1)n(n-1)}{6} - \frac{16n^2(n-1)}{2} + 3n^3\right) \\\\= \lim_{n\to\infty} \frac8{n^3} \left(\frac{49n^3}3-24n^2+\frac{32n}3\right) \\\\= \lim_{n\to\infty} \frac{8\left(49n^2-72n+32\right)}{3n^2} = \boxed{\frac{392}3}

You might be interested in
Evaluate the radical. <br><br> 1000√3
den301095 [7]
1732.050808

Simple enter 1000 * root 3 in your calculator.
4 0
3 years ago
A package of 3 pairs of insulated costs ​$22. 47 What is the unit price of the pairs of ​gloves?
Rasek [7]

Answer:

7.49

Step-by-step explanation:

22.47 divided by 3

5 0
3 years ago
Find the slope of the tangent to y= -7Sin(x)+2cos(x) at x= 3π/4
BaLLatris [955]
Y = -7sin(x) + 2cos(x)
y = -7sin(3π/4) + 2cos(3π/4)
y = -7sin(9.42/4) + 2cos(9.42/4)
y = -7sin(2.355) + 2cos(2.355)
y = -7(0.03698381721) + 2(0.9993158646)
y = -0.2588867205 + 1.998631729
y = 1.739745009
6 0
3 years ago
What is the slope for (5,7) (-4,-2)
Wewaii [24]

Answer:

Slope = 1

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
From the set {80, 19, 11}, use substitution to determine which value of x makes the equation true. 8x = 88 A. none of these B. 1
mel-nik [20]

Answer:

  C.  11

Step-by-step explanation:

Substituting, we have ...

  8{80, 19, 11} ?= 88

  {640, 152, 88} ?= 88

The value from the set that makes the equation true is x = 11.

_____

<em>Alternate methods of solution (other than substitution)</em>

It can be easier to make use of your knowledge of factoring:

  8x = 8·11

  x = 11

Or to make use of your knowledge of numbers (place value):

  8·10 = 80

so x will not be very different from 10.

3 0
3 years ago
Other questions:
  • 5y-8z-(z+3y)+5(y-2z)
    15·1 answer
  • PLEASE ANSWER 1-6 &amp; SHOW YOUR WORK
    8·1 answer
  • What is the GCF of 55 and 100?
    6·2 answers
  • J. Michael filled the watering can 6 times to water the small tomato plants. The watering can held the quarts of water. How many
    10·1 answer
  • Find the value of x and the value of y.
    9·1 answer
  • HELP PLEASE
    13·1 answer
  • Let f (x) = (1 − x)−1 and x0 = 0.
    11·1 answer
  • Thank you for the help
    8·1 answer
  • What i this pls help me out
    12·2 answers
  • HELP ME WITH THIS PLEASEEE
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!