Split up the interval [1, 9] into <em>n</em> subintervals of equal length (9 - 1)/<em>n</em> = 8/<em>n</em> :
[1, 1 + 8/<em>n</em>], [1 + 8/<em>n</em>, 1 + 16/<em>n</em>], [1 + 16/<em>n</em>, 1 + 24/<em>n</em>], …, [1 + 8 (<em>n</em> - 1)/<em>n</em>, 9]
It should be clear that the left endpoint of each subinterval make up an arithmetic sequence, so that the <em>i</em>-th subinterval has left endpoint
1 + 8/<em>n</em> (<em>i</em> - 1)
Then we approximate the definite integral by the sum of the areas of <em>n</em> rectangles with length 8/<em>n</em> and height :
Take the limit as <em>n</em> approaches infinity and the approximation becomes exact. So we have