First factor the numerator
b^2-6b+8/b-4 * b+8/b-2
u will get
(b-2)(b-4)/(b-4)*(b-2)*b+8
those will cancel out each other will left only
b+8<span />
Answer: 27.9 let me know if you need a another answer I hope this helps!
Answer:
<h2>Leah is actually wrong, because those rectangles are similar.</h2>
Step-by-step explanation:
Remember that similarity is about having proportional sides and congruent angles. When we have congruent sides, then those rectangles are congruent not similar.
In this case, to find the similarity, Leah should compare bases and heights thorugh division, because the ratio between heights and the ratio between bases must be equal. So, let's divide.


As you can observe, both ratios are equal.
Therefore, those rectangles are congruent.

- Given - <u>a </u><u>cone</u><u> </u><u>with </u><u>volume</u><u> </u><u>7</u><u>6</u><u>9</u><u>?</u><u>3</u><u> </u><u>ft³</u><u> </u><u>,</u><u> </u><u>having </u><u>a </u><u>height </u><u>of </u><u>1</u><u>5</u><u> </u><u>ft</u>
- To calculate - <u>radius </u><u>of </u><u>the </u><u>cone</u>
We know that ,

<u>substituting</u><u> </u><u>the </u><u>values </u><u>in </u><u>the </u><u>formula</u><u> </u><u>stated </u><u>above </u><u>,</u>

therefore ,
<u>radius </u><u>=</u><u> </u><u>7</u><u> </u><u>cm</u>
hope helpful ~
5.5 inches? If so 13.97 cm.