1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Darina [25.2K]
2 years ago
10

This has been deleted as question wasn't answered on time

Chemistry
1 answer:
astra-53 [7]2 years ago
8 0
How i be feeling waiting for my questions to be answered in the middle of a quiz.
You might be interested in
Why is burning not a physical change?
Lerok [7]
I think it might be the last answer.... Or the second one. Yeah i think it’s the second one
4 0
2 years ago
Read 2 more answers
Consider the titration of a 20.0-mL sample of 0.105 M HC2H3O2 with 0.125 M NaOH. Determine each quantity. a. the initial pH b. t
Oksi-84 [34.3K]

Answer:

Explanation:

Given that:

Concentration of HC_2H_3O_2 \  (M_1) = 0.105 M

Volume of  HC_2H_3O_2 \  (V_1) = 20.0 mL

Concentration of NaOH (M_2) = 0.125 M

The  chemical reaction can be expressed as:

HC_2H_3O_2_{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O_{(l)}

Using the ICE Table to determine the equilibrium concentrations.

          HC_2 H_3 O_2 _{(aq)} + H_2O _{(l) } \to C_2 H_3O_2^- _{(aq)} + H_3O^+_{ (aq)}

I            0.105                                     0                  0

C              -x                                         +x                +x

E            0.105 - x                                  x                  x

K_a = \dfrac{[C_2H_5O^-_2][H_3O^+]}{[HC_2H_3O_2]}

K_a = \dfrac{(x)(x)}{(0.105-x)}

Recall that the ka for HC_2H_3O_2= 1.8 \times 10^{-5}

Then;

1.8 \times 10^{-5} = \dfrac{(x)(x)}{(0.105 -x)}

1.8 \times 10^{-5} = \dfrac{x^2}{(0.105 -x)}

By solving the above mathematical expression;

x = 0.00137 M

H_3O^+ = x = 0.00137  \ M \\ \\  pH = - log [H_3O^+]  \\ \\  pH = - log ( 0.00137 )

pH = 2.86

Hence, the initial pH = 2.86

b)  To determine the volume of the added base needed to reach the equivalence point by using the formula:

M_1 V_1 = M_2 V_2

V_2= \dfrac{M_1V_1}{M_2}

V_2= \dfrac{0.105 \ M \times 20.0 \ mL }{0.125 \ M}

V_2 = 16.8 mL

Thus, the volume of the added base needed to reach the equivalence point = 16.8 mL

c) when pH of 5.0 mL of the base is added.

The Initial moles of HC_2H_3O_2 = molarity × volume

= 0.105  \ M \times 20.0 \times 10^{-3} \ L

= 2.1 \times 10^{-3}

number of moles of 5.0 NaOH = molarity × volume

number of moles of 5.0 NaOH = 0.625 \times 10^{-3}

After reacting with 5.0 mL NaOH, the number of moles is as follows:

                    HC_2 H_3 O_2 _{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O{ (l)}

Initial moles   2.1*10^{-3}       0.625 * 10^{-3}           0                      0

F(moles) (2.1*10^{-3} - 0.625 \times 10^{-3})    0      0.625 \times 10^{-3}         0.625 \times 10^{-3}

The pH of the solution is then calculated as follows:

pH = pKa + log \dfrac{[base]} {[acid]}

Recall that:

pKa for HC_2H_3O_2=4.74

Then; we replace the concentration with the number of moles since the volume of acid and base are equal

∴

pH = 4.74 + log \dfrac{0.625 \times 10^{-3}}{1.475 \times 10^{-3}}

pH = 4.37

Thus, the pH of the solution after the addition of 5.0 mL of NaOH = 4.37

d)

We need to understand that the pH at 1/2 of the equivalence point is equal to the concentration of the base and the acid.

Therefore;

pH = pKa = 4.74

e) pH at the equivalence point.

Here, the pH of the solution is the result of the reaction in the (C_2H_3O^-_2) with H_2O

The total volume(V) of the solution = V(acid) + V(of the base added to reach equivalence point)

The total volume(V) of the solution = 20.0 mL + 16.8 mL

The total volume(V) of the solution = 36.8 mL

Concentration of (C_2H_3O^-_2) = moles/volume

= \dfrac{2.1 \times 10^{-3} \ moles}{0.0368 \ L}

= 0.0571 M

Now, using the ICE table to determine the concentration of H_3O^+;

             C_2H_5O^-_2 _{(aq)} + H_2O_{(l)} \to HC_2H_3O_2_{(aq)} + OH^-_{(aq)}

I              0.0571                                0                      0

C              -x                                       +x                     +x

E             0.0571 - x                             x                       x

Recall that the Ka for HC_2H_3O_2 = 1.8 \times 10^{-5}

K_b = \dfrac{K_w}{K_a} = \dfrac{1.0\times 10^{-14}}{1.8 \times 10^{-5} }  \\ \\ K_b = 5.6 \times 10^{-10}

k_b = \dfrac{[ HC_2H_3O_2] [OH^-]}{[C_2H_3O^-_2]}

5.6 \times 10^{-10} = \dfrac{x *x }{0.0571 -x}

x = [OH^-] = 5.6 \times 10^{-6} \ M

[H_3O^+] = \dfrac{1.0 \times 10^{-14} }{5.6 \times 10^{-6} }

[H_3O^+] =1.77 \times 10^{-9}

pH =-log  [H_3O^+]   \\ \\  pH =-log (1.77 \times 10^{-9}) \\ \\ \mathbf{pH = 8.75 }

Hence, the pH of the solution at equivalence point = 8.75

f) The pH after 5.09 mL base is added beyond (E) point.

             HC_2 H_3 O_2 _{(aq)} + NaOH _{(aq)} \to NaC_2H_3O_2_{(aq)} + H_2O{ (l)}

Before                             0.0021              0.002725         0

After                                   0                     0.000625        0.0021

[OH^-] = \dfrac{0.000625 \ moles}{(0.02 + 0.0218 )  \ L}

[OH^-] = \dfrac{0.000625 \ moles}{0.0418 \ L}

[OH^-] =  0.0149 \ M

From above; we can determine the concentration of H_3O^+ by using the following method:

[H_3O^+] = \dfrac{1.0 \times 10^{-14} }{0.0149}

[H_3O^+] = 6.7 \times 10^{-13}

pH = - log [H_3O^+]

pH = -log (6.7 \times 10^{-13} )

pH = 12.17

Finally, the pH of the solution after adding 5.0 mL of NaOH beyond (E) point = 12.17

3 0
3 years ago
This graph illustrates that, under conditions of constant pressure, as the temperature of liquid water increases, its volume ___
Lunna [17]
it varies.........................
8 0
2 years ago
How does a difference in 1 pH unit change in terms of H+ concentration? Ex: How does a pH of 3 differ from the pH of 4? Which on
yuradex [85]

Answer:

A difference of 1 would mean there is either x10 more or less depending on where you are starting.

Explanation:

The pH of 3 differs from 4 because the acidity of 3 is 10x higher than that of 4. This is due to how the scientific notation of 3 in relation to pH is 10x^-3 while that of 4 is 10^-4 so in terms of the stronger acid that would be the one with the pH of 3.

6 0
2 years ago
How many joules of heat are absorbed when 73 g water are heated from 30*C to 43*C? *
stepladder [879]

Answer:

3966.82 J

Explanation:

q=sm∆T

q=73×13×4.18

the specific heat for water is 4.18

6 0
2 years ago
Read 2 more answers
Other questions:
  • A compound contains only carbon, hydrogen, nitrogen, and oxygen. Combustion of 0.157g of the compound produced 0.213g of CO2 and
    6·1 answer
  • 23. Which of the following describes ionic bonds?
    15·2 answers
  • Identify the electrophilic site in the following molecule, CH_3CH_2NHCH_2CH_3. (A) H (B) N (C) CH_2 (D) CH_3 (E) there is no ele
    8·1 answer
  • Nomenclature for NaC2H3O2
    14·1 answer
  • Identify the correct formula for each of the following acids. Click here to use the common polyatomic ion sheet if needed.
    13·1 answer
  • A chemist reacts 30.0 mL of 5.6 M HCl with an excess of Mg(OH)2 How many grams of magnesium will be produced
    8·1 answer
  • Someone pls help me I will mark you as brain
    9·1 answer
  • A wave is moving towards shore with a velocity of 5.0 MS if it’s frequency is 2.5 Herz what is the wave length
    12·1 answer
  • What type of weathering involves changes in the size or shape of the rock?
    15·1 answer
  • Vanillin the flavoring agent in vanilla has a mass percent composition of 63.15 per h ,31.55per o. determine the empirical formu
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!