Answer:
The first valence electron is removed.
Explanation:
Ionization energy is the energy that is needed to tear out the last electron of an atom in its ground state or gaseous state.
A(g) + IE ----> A+(g) + 1e-
When we talk about starting an electron we refer to the last valence electron, since it is the one that is furthest from the atomic nucleus, the one that does not feel attracted. As the question asks us the opposite, the ionization energy is going to be extremely high, if the electron to be removed occupies the first valence layer, since it is totally attracted to the nucleus.
(Answer) (d) Chemical reaction rates vary with the conditions of the reaction, but nuclear decay rates do not.
Rate of a chemical reaction refers to rate of formation of products from reactions during a chemical reaction. The rates of chemical reactions depend on various factors such as temperature, pressure, concentration of reactants, presence of catalyst etc. For this reason, chemical reaction rates vary with the conditions of the reaction.
Nuclear decay rate refers to the constant ratio of the number of atoms of radioactive nucleus that decay during a certain interval of time to the total number of radioactive atoms at the beginning of the time interval. Nuclear decay rates are constant and do not vary with the conditions of the reaction.
The molecular formula shows the exact number of molecules. Therefor, the empirical formula is the simplest formula of the molecular formula
Answer:
π = 4.1 atm
Explanation:
We can calculate the osmotic pressure exerted by a solution using the following expression.
π = M . R . T
where,
π is the osmotic pressure
M is the molar concentration of the solution
R is the ideal gas constant
T is the absolute temperature
The absolute temperature is 37 + 273 = 310 K
π = M . R . T
π = (0.16 mol/L) . (0.082atm.L/mol.K) . 310 K = 4.1 atm